organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cholest-5-en-7-one

aBio-resource, Paper and Coatings Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 2 June 2010; accepted 7 June 2010; online 16 June 2010)

In the deca­hydro­phenanthrenone ring system of the title compound, C27H44O, the two cyclo­hexane rings adopt chair conformations, whereas the cyclo­hexene ring adopts an envelope conformation. The cyclo­pentane ring is twisted. In the crystal structure, mol­ecules are stacked along the a axis, but no significant inter­molecular inter­actions are observed.

Related literature

For general background to and the biological activity of steroid derivatives, see: Drach et al. (2000[Drach, S. V., Litvinovskaya, R. P. & Kripach, V. A. (2000). Chem. Heterocycl. Compd, 36, 233-255.]); Grover et al. (2007[Grover, V. K., Babu, R. & Bedi, S. P. S. (2007). Indian J. Anaesth. 51, 389-393.]); Khan & Yusuf (2009[Khan, S. A. & Yusuf, M. (2009). Eur. J. Med. Chem. 44, 2597-2600.]). For the synthesis of title compound, see: Dauben & Takemura (1953[Dauben, W. G. & Takemura, K. H. (1953). J. Am. Chem. Soc. 75, 6302-6304.]); Ruiz (1958[Ruiz, H. J. (1958). Chem. Abstr. 52, 10126a.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For details of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C27H44O

  • Mr = 384.62

  • Monoclinic, P 21

  • a = 6.3468 (13) Å

  • b = 11.517 (3) Å

  • c = 15.678 (3) Å

  • β = 91.470 (5)°

  • V = 1145.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.25 × 0.18 × 0.03 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.998

  • 13066 measured reflections

  • 3512 independent reflections

  • 2776 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.132

  • S = 1.04

  • 3512 reflections

  • 252 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Steroids are compounds of biological origin and play an important role in biological systems. The dramatic expansion of steroidal chemistry came with the discovery of steroidal hormones. The discovery of several steroids with their wide application in therapy have brought about an increasing interest (Grover et al., 2007). During the last decade, the major efforts of the chemists were directed towards the modification of the structures of steroids in order to enhance their biologically activity (Khan & Yusuf, 2009; Drach et al., 2000).

The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges. The cyclopentane ring, C1/C14–C17 is twisted about the C1–C14 with the puckering parameters (Cremer & Pople, 1975) Q = 0.442 (3) Å and ϕ = 191.8 (3)°. In the tetradecahydrophenanthrene ring system, two cyclohexane rings, C5—C10 and C1—C4/C13/C14 adopt chair conformations with the puckering parameters Q = 0.539 (3) Å, Θ = 170.8 (3)° and ϕ = 320 (2)°; and Q = 0.585 (3) Å, Θ = 173.3 (3)° and ϕ = 150 (2) °, respectively, whereas C4/C5/C10—C13 adopts an envelope conformation with atom C4 deviating by 0.317 (2) Å from the mean plane through the remaining atoms, puckering parameters Q = 0.456 (3) Å, Θ = 51.6 (4)° and ϕ = 343.4 (4)°. The butyl (C19—C22) substituent at C18 is nearly planar, this plane lying almost perpendicular to the least-squares plane of the cyclopentane ring. The maximum deviation of the atoms C19, C20, C21 and C22 from their mean plane is 0.002 (3) Å for atoms C19, C21 and C22; and the dihedral angle between the plane of the butyl group and the least-squares plane through cyclopentane ring is 80.0 (2)°. In the crystal packing (Fig. 2), the molecules are stacked along the crystallographic a axis.

Related literature top

For general background to and the biological activity of steroid derivatives, see: Drach et al. (2000); Grover et al. (2007); Khan & Yusuf (2009). For the synthesis of title compound, see: Dauben & Takemura (1953); Ruiz (1958). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For details of ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of butyl chromate [tert-butyl alcohol (60 ml), CrO3 (20 g), acetic acid (84 ml) and acetic anhydride (10 ml)] (Ruiz, 1958) was added at 0 °C to a solution of cholest-5-ene (8 g) in CCl4 (150 ml), acetic acid (30 ml) and acetic anhydride (10 ml). The contents were refluxed for 3 h and then diluted with water. The organic layer was washed with sodium bicarbonate solution (5%) and water; and then dried over anhydrous sodium sulfate. Evaporation of the solvents under reduced pressure provided cholest-5-en-7-one which was crystallized from methanol (3.1 g), m.p. 128 °C (reported, m.p. 125–129 °C; Dauben & Takemura, 1953).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The highest residual electron density peak is located at 0.07 Å from C24 and the deepest hole is located at 0.60 Å from C24. In the absence of significant anomalous dispersion, 2670 Friedel pairs were merged in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the a axis.
Cholest-5-en-7-one top
Crystal data top
C27H44OF(000) = 428
Mr = 384.62Dx = 1.115 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2115 reflections
a = 6.3468 (13) Åθ = 2.2–27.8°
b = 11.517 (3) ŵ = 0.07 mm1
c = 15.678 (3) ÅT = 100 K
β = 91.470 (5)°Plate, colourless
V = 1145.6 (4) Å30.25 × 0.18 × 0.03 mm
Z = 2
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3512 independent reflections
Radiation source: fine-focus sealed tube2776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 30.2°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.984, Tmax = 0.998k = 1616
13066 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.3776P]
where P = (Fo2 + 2Fc2)/3
3512 reflections(Δ/σ)max = 0.001
252 parametersΔρmax = 0.51 e Å3
1 restraintΔρmin = 0.44 e Å3
Crystal data top
C27H44OV = 1145.6 (4) Å3
Mr = 384.62Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.3468 (13) ŵ = 0.07 mm1
b = 11.517 (3) ÅT = 100 K
c = 15.678 (3) Å0.25 × 0.18 × 0.03 mm
β = 91.470 (5)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2776 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.998Rint = 0.058
13066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.132H-atom parameters constrained
S = 1.04Δρmax = 0.51 e Å3
3512 reflectionsΔρmin = 0.44 e Å3
252 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4772 (3)0.33629 (19)1.00165 (15)0.0316 (5)
C10.0378 (3)0.1067 (2)0.87139 (16)0.0161 (5)
C20.1540 (4)0.0845 (2)0.92977 (16)0.0201 (5)
H2A0.24070.15390.93230.024*
H2B0.23760.02240.90610.024*
C30.0906 (4)0.0514 (2)1.02042 (17)0.0225 (5)
H3A0.21710.04261.05590.027*
H3B0.01940.02321.01850.027*
C40.0544 (4)0.1409 (2)1.06179 (16)0.0185 (5)
H4A0.02780.21261.06780.022*
C50.1179 (4)0.1052 (2)1.15351 (16)0.0196 (5)
C60.0827 (4)0.1099 (3)1.21199 (18)0.0283 (6)
H6A0.17570.04701.19630.034*
H6B0.15580.18231.20160.034*
C70.0402 (5)0.1007 (3)1.30742 (18)0.0344 (7)
H7A0.02240.02591.31960.041*
H7B0.17190.10671.33990.041*
C80.1088 (5)0.1976 (3)1.33392 (19)0.0382 (7)
H8A0.13750.19061.39420.046*
H8B0.04320.27251.32460.046*
C90.3134 (5)0.1899 (3)1.28214 (18)0.0292 (6)
H9A0.38670.11931.29750.035*
H9B0.40240.25511.29650.035*
C100.2795 (4)0.1900 (2)1.18697 (17)0.0210 (5)
C110.3927 (4)0.2611 (2)1.13562 (17)0.0225 (5)
H11A0.48620.31191.16100.027*
C120.3792 (4)0.2643 (2)1.04303 (17)0.0200 (5)
C130.2455 (4)0.1700 (2)1.00234 (16)0.0171 (5)
H13A0.33210.10000.99580.021*
C140.1667 (4)0.2043 (2)0.91427 (16)0.0163 (5)
H14A0.06870.26900.92390.020*
C150.3230 (4)0.2445 (2)0.84445 (16)0.0222 (5)
H15A0.36370.32470.85310.027*
H15B0.44850.19640.84320.027*
C160.1995 (4)0.2306 (2)0.76141 (17)0.0219 (5)
H16A0.16740.30620.73770.026*
H16B0.28260.18740.71950.026*
C170.0071 (4)0.1643 (2)0.78416 (16)0.0176 (5)
H17A0.11780.22240.79410.021*
C180.0752 (4)0.0879 (2)0.70931 (16)0.0196 (5)
H18A0.03750.03100.69920.024*
C190.0939 (4)0.1585 (3)0.62657 (16)0.0233 (5)
H19A0.12680.10530.58080.028*
H19B0.04270.19240.61280.028*
C200.2579 (4)0.2556 (2)0.62794 (17)0.0221 (5)
H20A0.23180.30720.67540.027*
H20B0.39710.22230.63660.027*
C210.2520 (4)0.3250 (3)0.54552 (19)0.0320 (7)
H21A0.11140.35670.53710.038*
H21B0.27720.27250.49850.038*
C220.4102 (5)0.4243 (3)0.5418 (2)0.0320 (7)
H22A0.40350.46670.59580.038*
C230.3563 (6)0.5096 (4)0.4707 (3)0.0520 (7)
H23A0.46240.56890.46930.078*
H23B0.22190.54450.48100.078*
H23C0.35040.46940.41710.078*
C240.6329 (5)0.3824 (4)0.5333 (3)0.0520 (7)
H24A0.72710.44760.53500.078*
H24B0.64590.34220.48010.078*
H24C0.66800.33070.57960.078*
C250.1682 (4)0.0043 (2)0.85817 (18)0.0228 (5)
H25A0.07960.06490.83710.034*
H25B0.28090.01040.81760.034*
H25C0.22570.02780.91150.034*
C260.2164 (5)0.0170 (2)1.15541 (19)0.0270 (6)
H26A0.32630.02241.11240.040*
H26B0.27430.03071.21050.040*
H26C0.10990.07391.14460.040*
C270.2764 (4)0.0194 (2)0.72725 (18)0.0234 (5)
H27A0.31390.02250.67690.035*
H27B0.25420.03430.77300.035*
H27C0.38820.07190.74320.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0336 (11)0.0294 (11)0.0322 (11)0.0148 (9)0.0057 (8)0.0012 (9)
C10.0144 (10)0.0140 (10)0.0201 (12)0.0000 (9)0.0035 (8)0.0013 (10)
C20.0156 (10)0.0227 (12)0.0222 (12)0.0014 (9)0.0048 (9)0.0033 (11)
C30.0207 (12)0.0259 (13)0.0213 (13)0.0073 (10)0.0054 (10)0.0053 (11)
C40.0184 (11)0.0179 (11)0.0192 (12)0.0001 (9)0.0030 (9)0.0024 (10)
C50.0222 (11)0.0170 (11)0.0199 (12)0.0015 (10)0.0064 (9)0.0022 (10)
C60.0264 (13)0.0351 (15)0.0235 (13)0.0030 (12)0.0012 (10)0.0034 (13)
C70.0378 (16)0.0427 (18)0.0226 (14)0.0050 (15)0.0003 (12)0.0029 (14)
C80.0532 (19)0.0413 (18)0.0203 (14)0.0078 (16)0.0044 (13)0.0032 (14)
C90.0379 (15)0.0256 (13)0.0245 (14)0.0041 (12)0.0090 (11)0.0016 (12)
C100.0232 (12)0.0159 (11)0.0243 (13)0.0019 (10)0.0065 (10)0.0012 (10)
C110.0229 (12)0.0188 (12)0.0263 (13)0.0007 (10)0.0079 (10)0.0013 (11)
C120.0179 (11)0.0167 (11)0.0255 (13)0.0007 (9)0.0046 (9)0.0007 (10)
C130.0150 (10)0.0170 (11)0.0196 (11)0.0003 (9)0.0039 (8)0.0004 (10)
C140.0149 (10)0.0144 (10)0.0199 (12)0.0024 (9)0.0037 (8)0.0015 (10)
C150.0188 (11)0.0236 (13)0.0244 (13)0.0078 (10)0.0029 (9)0.0017 (11)
C160.0187 (11)0.0242 (12)0.0229 (13)0.0020 (10)0.0019 (9)0.0041 (11)
C170.0138 (10)0.0163 (11)0.0228 (12)0.0024 (9)0.0025 (9)0.0011 (10)
C180.0185 (11)0.0193 (12)0.0212 (12)0.0025 (9)0.0036 (9)0.0020 (10)
C190.0213 (12)0.0304 (14)0.0181 (12)0.0022 (11)0.0003 (10)0.0009 (11)
C200.0245 (12)0.0232 (13)0.0187 (12)0.0020 (10)0.0018 (9)0.0025 (11)
C210.0226 (13)0.0477 (18)0.0258 (15)0.0027 (13)0.0029 (11)0.0120 (14)
C220.0381 (16)0.0290 (14)0.0294 (16)0.0061 (13)0.0145 (13)0.0078 (13)
C230.0340 (11)0.0552 (16)0.0672 (17)0.0041 (11)0.0088 (11)0.0357 (15)
C240.0340 (11)0.0552 (16)0.0672 (17)0.0041 (11)0.0088 (11)0.0357 (15)
C250.0240 (12)0.0151 (11)0.0297 (14)0.0007 (10)0.0080 (10)0.0009 (11)
C260.0386 (15)0.0168 (12)0.0260 (14)0.0028 (11)0.0102 (12)0.0037 (11)
C270.0260 (12)0.0212 (12)0.0232 (13)0.0030 (10)0.0065 (10)0.0006 (11)
Geometric parameters (Å, º) top
O1—C121.215 (3)C15—H15A0.9700
C1—C21.526 (3)C15—H15B0.9700
C1—C251.534 (3)C16—C171.551 (3)
C1—C171.553 (3)C16—H16A0.9700
C1—C141.554 (3)C16—H16B0.9700
C2—C31.535 (3)C17—C181.537 (3)
C2—H2A0.9700C17—H17A0.9800
C2—H2B0.9700C18—C271.521 (4)
C3—C41.537 (3)C18—C191.538 (4)
C3—H3A0.9700C18—H18A0.9800
C3—H3B0.9700C19—C201.528 (4)
C4—C131.547 (3)C19—H19A0.9700
C4—C51.558 (3)C19—H19B0.9700
C4—H4A0.9800C20—C211.519 (4)
C5—C101.519 (3)C20—H20A0.9700
C5—C261.541 (4)C20—H20B0.9700
C5—C61.550 (4)C21—C221.524 (5)
C6—C71.531 (4)C21—H21A0.9700
C6—H6A0.9700C21—H21B0.9700
C6—H6B0.9700C22—C241.502 (4)
C7—C81.527 (5)C22—C231.518 (5)
C7—H7A0.9700C22—H22A0.9800
C7—H7B0.9700C23—H23A0.9600
C8—C91.516 (5)C23—H23B0.9600
C8—H8A0.9700C23—H23C0.9600
C8—H8B0.9700C24—H24A0.9600
C9—C101.513 (4)C24—H24B0.9600
C9—H9A0.9700C24—H24C0.9600
C9—H9B0.9700C25—H25A0.9600
C10—C111.344 (4)C25—H25B0.9600
C11—C121.457 (4)C25—H25C0.9600
C11—H11A0.9300C26—H26A0.9600
C12—C131.528 (3)C26—H26B0.9600
C13—C141.532 (3)C26—H26C0.9600
C13—H13A0.9800C27—H27A0.9600
C14—C151.530 (4)C27—H27B0.9600
C14—H14A0.9800C27—H27C0.9600
C15—C161.545 (3)
C2—C1—C25111.2 (2)C16—C15—H15A111.0
C2—C1—C17115.98 (18)C14—C15—H15B111.0
C25—C1—C17110.3 (2)C16—C15—H15B111.0
C2—C1—C14106.4 (2)H15A—C15—H15B109.0
C25—C1—C14111.92 (18)C15—C16—C17107.5 (2)
C17—C1—C14100.51 (18)C15—C16—H16A110.2
C1—C2—C3111.90 (19)C17—C16—H16A110.2
C1—C2—H2A109.2C15—C16—H16B110.2
C3—C2—H2A109.2C17—C16—H16B110.2
C1—C2—H2B109.2H16A—C16—H16B108.5
C3—C2—H2B109.2C18—C17—C16111.0 (2)
H2A—C2—H2B107.9C18—C17—C1119.3 (2)
C2—C3—C4113.4 (2)C16—C17—C1103.87 (18)
C2—C3—H3A108.9C18—C17—H17A107.4
C4—C3—H3A108.9C16—C17—H17A107.4
C2—C3—H3B108.9C1—C17—H17A107.4
C4—C3—H3B108.9C27—C18—C17114.0 (2)
H3A—C3—H3B107.7C27—C18—C19110.3 (2)
C3—C4—C13111.1 (2)C17—C18—C19111.7 (2)
C3—C4—C5112.6 (2)C27—C18—H18A106.8
C13—C4—C5113.32 (19)C17—C18—H18A106.8
C3—C4—H4A106.4C19—C18—H18A106.8
C13—C4—H4A106.4C20—C19—C18116.3 (2)
C5—C4—H4A106.4C20—C19—H19A108.2
C10—C5—C26107.6 (2)C18—C19—H19A108.2
C10—C5—C6109.0 (2)C20—C19—H19B108.2
C26—C5—C6110.3 (2)C18—C19—H19B108.2
C10—C5—C4110.0 (2)H19A—C19—H19B107.4
C26—C5—C4111.9 (2)C21—C20—C19111.8 (2)
C6—C5—C4108.0 (2)C21—C20—H20A109.3
C7—C6—C5114.4 (2)C19—C20—H20A109.3
C7—C6—H6A108.7C21—C20—H20B109.3
C5—C6—H6A108.7C19—C20—H20B109.3
C7—C6—H6B108.7H20A—C20—H20B107.9
C5—C6—H6B108.7C20—C21—C22115.2 (3)
H6A—C6—H6B107.6C20—C21—H21A108.5
C8—C7—C6109.9 (3)C22—C21—H21A108.5
C8—C7—H7A109.7C20—C21—H21B108.5
C6—C7—H7A109.7C22—C21—H21B108.5
C8—C7—H7B109.7H21A—C21—H21B107.5
C6—C7—H7B109.7C24—C22—C23109.8 (3)
H7A—C7—H7B108.2C24—C22—C21112.6 (3)
C9—C8—C7109.8 (3)C23—C22—C21112.2 (3)
C9—C8—H8A109.7C24—C22—H22A107.3
C7—C8—H8A109.7C23—C22—H22A107.3
C9—C8—H8B109.7C21—C22—H22A107.3
C7—C8—H8B109.7C22—C23—H23A109.5
H8A—C8—H8B108.2C22—C23—H23B109.5
C10—C9—C8112.7 (2)H23A—C23—H23B109.5
C10—C9—H9A109.0C22—C23—H23C109.5
C8—C9—H9A109.0H23A—C23—H23C109.5
C10—C9—H9B109.0H23B—C23—H23C109.5
C8—C9—H9B109.0C22—C24—H24A109.5
H9A—C9—H9B107.8C22—C24—H24B109.5
C11—C10—C9120.3 (2)H24A—C24—H24B109.5
C11—C10—C5122.7 (2)C22—C24—H24C109.5
C9—C10—C5117.0 (2)H24A—C24—H24C109.5
C10—C11—C12124.6 (2)H24B—C24—H24C109.5
C10—C11—H11A117.7C1—C25—H25A109.5
C12—C11—H11A117.7C1—C25—H25B109.5
O1—C12—C11120.5 (2)H25A—C25—H25B109.5
O1—C12—C13123.0 (2)C1—C25—H25C109.5
C11—C12—C13116.5 (2)H25A—C25—H25C109.5
C12—C13—C14113.0 (2)H25B—C25—H25C109.5
C12—C13—C4109.7 (2)C5—C26—H26A109.5
C14—C13—C4109.24 (18)C5—C26—H26B109.5
C12—C13—H13A108.3H26A—C26—H26B109.5
C14—C13—H13A108.3C5—C26—H26C109.5
C4—C13—H13A108.3H26A—C26—H26C109.5
C15—C14—C13120.13 (19)H26B—C26—H26C109.5
C15—C14—C1104.36 (19)C18—C27—H27A109.5
C13—C14—C1113.01 (19)C18—C27—H27B109.5
C15—C14—H14A106.1H27A—C27—H27B109.5
C13—C14—H14A106.1C18—C27—H27C109.5
C1—C14—H14A106.1H27A—C27—H27C109.5
C14—C15—C16103.77 (19)H27B—C27—H27C109.5
C14—C15—H15A111.0
C25—C1—C2—C364.6 (3)C5—C4—C13—C1255.4 (3)
C17—C1—C2—C3168.2 (2)C3—C4—C13—C1452.3 (3)
C14—C1—C2—C357.4 (3)C5—C4—C13—C14179.8 (2)
C1—C2—C3—C455.3 (3)C12—C13—C14—C1553.9 (3)
C2—C3—C4—C1351.4 (3)C4—C13—C14—C15176.4 (2)
C2—C3—C4—C5179.7 (2)C12—C13—C14—C1177.8 (2)
C3—C4—C5—C10173.8 (2)C4—C13—C14—C159.7 (3)
C13—C4—C5—C1046.6 (3)C2—C1—C14—C15166.22 (19)
C3—C4—C5—C2654.2 (3)C25—C1—C14—C1572.2 (2)
C13—C4—C5—C2672.9 (3)C17—C1—C14—C1544.9 (2)
C3—C4—C5—C667.4 (3)C2—C1—C14—C1361.6 (2)
C13—C4—C5—C6165.5 (2)C25—C1—C14—C1360.0 (3)
C10—C5—C6—C749.0 (3)C17—C1—C14—C13177.14 (19)
C26—C5—C6—C768.9 (3)C13—C14—C15—C16161.7 (2)
C4—C5—C6—C7168.5 (3)C1—C14—C15—C1633.7 (2)
C5—C6—C7—C857.5 (4)C14—C15—C16—C179.3 (3)
C6—C7—C8—C958.3 (3)C15—C16—C17—C18147.7 (2)
C7—C8—C9—C1054.5 (3)C15—C16—C17—C118.4 (3)
C8—C9—C10—C11131.4 (3)C2—C1—C17—C1883.6 (3)
C8—C9—C10—C549.8 (3)C25—C1—C17—C1843.9 (3)
C26—C5—C10—C11104.0 (3)C14—C1—C17—C18162.2 (2)
C6—C5—C10—C11136.3 (3)C2—C1—C17—C16152.2 (2)
C4—C5—C10—C1118.1 (3)C25—C1—C17—C1680.2 (2)
C26—C5—C10—C974.6 (3)C14—C1—C17—C1638.0 (2)
C6—C5—C10—C945.0 (3)C16—C17—C18—C27179.6 (2)
C4—C5—C10—C9163.2 (2)C1—C17—C18—C2759.0 (3)
C9—C10—C11—C12177.1 (3)C16—C17—C18—C1954.5 (3)
C5—C10—C11—C121.5 (4)C1—C17—C18—C19175.1 (2)
C10—C11—C12—O1175.3 (3)C27—C18—C19—C2065.8 (3)
C10—C11—C12—C137.4 (4)C17—C18—C19—C2062.2 (3)
O1—C12—C13—C1425.7 (3)C18—C19—C20—C21175.9 (2)
C11—C12—C13—C14157.1 (2)C19—C20—C21—C22179.7 (2)
O1—C12—C13—C4147.9 (2)C20—C21—C22—C2471.8 (4)
C11—C12—C13—C434.9 (3)C20—C21—C22—C23163.7 (3)
C3—C4—C13—C12176.7 (2)

Experimental details

Crystal data
Chemical formulaC27H44O
Mr384.62
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.3468 (13), 11.517 (3), 15.678 (3)
β (°) 91.470 (5)
V3)1145.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.18 × 0.03
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.984, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
13066, 3512, 2776
Rint0.058
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.132, 1.04
No. of reflections3512
No. of parameters252
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia for providing research facilities. HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). MSK thanks USM for the award of post doctoral fellowship and CKQ thanks USM for the award of USM Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDauben, W. G. & Takemura, K. H. (1953). J. Am. Chem. Soc. 75, 6302–6304.  CrossRef CAS Web of Science Google Scholar
First citationDrach, S. V., Litvinovskaya, R. P. & Kripach, V. A. (2000). Chem. Heterocycl. Compd, 36, 233–255.  CrossRef CAS Google Scholar
First citationGrover, V. K., Babu, R. & Bedi, S. P. S. (2007). Indian J. Anaesth. 51, 389–393.  Google Scholar
First citationKhan, S. A. & Yusuf, M. (2009). Eur. J. Med. Chem. 44, 2597–2600.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRuiz, H. J. (1958). Chem. Abstr. 52, 10126a.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds