organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1693-o1694

1-{6-Chloro-2-[(2-chloro-6-methyl­quinolin-3-yl)meth­­oxy]-4-phenyl­quinolin-3-yl}ethanone

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 8 June 2010; accepted 13 June 2010; online 18 June 2010)

In the title compound, C28H20Cl2N2O2, the 2-chloro­quinoline and 6-chloro­quinoline ring systems are twisted slightly, making a dihedral angle of 4.05 (3)°. The dihedral angle between the 2-quinoline ring system and the phenyl ring attached to it is 74.43 (5)°. In the crystal structure, a pair of inter­molecular C—H⋯O hydrogen bonds connect the mol­ecules, forming centrosymmetric dimers with R22(16) motifs. The dimers are further consolidated by a C—H⋯π inter­action and a ππ stacking inter­action with a centroid–centroid distance of 3.6562 (10) Å.

Related literature

For related structures, see: Khan, Roopan, Hathwar & Akkurt (2010[Khan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o972-o973.]); Khan, Roopan, Kumar et al. (2010[Khan, F. N., Roopan, S. M., Kumar, R., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o1607-o1608.]); Roopan & Khan (2009[Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161-169.]). For the biological acivity of 2-quinolone derivatives, see: Ukita & Mizuno (1960[Ukita, C. & Mizuno, D. (1960). Chem. Pharm. Bull. 8, 1016-1020.]); Jayashree et al. (2010[Jayashree, B. S., Thomas, S. & Nayak, Y. (2010). Med. Chem. Res. 19, 193-209.]); Joseph et al. (2002[Joseph, B., Darro, F., Behard, A., Lesur, B., Collignon, F., Decaestecker, C., Frydman, A., Guillaumet, G. & Kiss, R. (2002). J. Med. Chem. 45, 2543-2555.]); Xiao et al. (2001[Xiao, Z., Waters, N. C., Woodard, C. L., Li, Z. & Li, P. K. (2001). Bioorg. Med. Chem. Lett. 11, 2875-2878.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20Cl2N2O2

  • Mr = 487.36

  • Triclinic, [P \overline 1]

  • a = 8.0552 (2) Å

  • b = 12.4499 (5) Å

  • c = 13.3718 (5) Å

  • α = 67.555 (4)°

  • β = 80.183 (3)°

  • γ = 77.273 (3)°

  • V = 1203.40 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 295 K

  • 0.24 × 0.18 × 0.17 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.912, Tmax = 0.951

  • 23521 measured reflections

  • 4468 independent reflections

  • 3013 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.05

  • 4468 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.93 2.39 2.735 (2) 101
C24—H24⋯O2i 0.93 2.51 3.392 (3) 157
C10—H10ACg4ii 0.97 2.67 3.4430 (18) 137
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST (Nardelli, 1983[Nardelli, M. (1983). Comput. Chem. 7, 95-98.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our previous work (Roopan et al., 2009; Khan, Roopan, Hathwar & Akkurt, 2010; Khan, Roopan, Kumar et al., 2010), we here report the crystal and molecular structures of 1-{2-[(2-chloro-6-methylquinolin-3-yl)methoxy]-6-chloro-4-phenylquinolin-3-yl}ethanone, (I).

In the title molecule, geometric parameters are in the usual ranges (Fig. 1). The 2-chloroquinoline (N1/C1–C9/Cl1) and 6-chloroquinoline (N2/C11—C19/Cl2) rings are approximately planar, with maximal deviations from their mean planes of -0.070 (1) and of -0.027 (1) Å for Cl1 and Cl2 atoms, respectively. The dihedral angle between these rings is 4.05 (3)°. The N2/C11—C19 quinoline ring makes dihedral angles of 74.43 (5) and 83.79 (11)° with the C20–C25 phenyl ring and the C26/C27/O2 acetaldehyde group, respectively.

In the crystal structure, intermolecular C—H···O hydrogen bonds link the pairs of molecules through an inversion center, forming a pseudo-dimer with an R22(16) (Table 1 and Fig. 2; Bernstein et al., 1995). C—H···π interactions (Table 1) and ππ stacking interactions between the quinoline rings [Cg1···Cg4(1 - x, 2 - y, -z) = 3.6562 (10) Å; Cg1 and Cg4 are the centroids of the N1/C1–C3/C8/C9 pyridine and C14–C19 benzene rings, respectively] may further stabilize the structure.

Related literature top

For related structures, see: Khan, Roopan, Hathwar & Akkurt (2010); Khan, Roopan, Kumar et al. (2010); Roopan & Khan (2009). For the biological acivity of 2-quinolone derivatives, see: Ukita & Mizuno (1960); Jayashree et al. (2010); Joseph et al. (2002); Xiao et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of 1-(6-chloro-2-hydroxy-4-phenylquinolin-3-yl)ethanone (1 mmol) in DMSO (5 ml), 2-chloro-3-chloromethyl-6-methylquinoline (1 mmol) and Ag2SO4 (10 mol %) were added and refluxed at 383 K. The reaction was completed with in 20 min. The reaction mixture was then filtered and the supernatant liquid was added drop wise in to the crushed ice. The solution was neutralized with dilute HCl. The precipitate was filtered off and re-crystallized with ethanol. The clear solution was kept for a day and the resulting crystals were dried.

Refinement top

All H atoms were positioned with idealized geometry (C—H = 0.93–0.97 Å) and were refined as riding, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A general view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
1-{6-Chloro-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]-4-phenylquinolin- 3-yl}ethanone top
Crystal data top
C28H20Cl2N2O2Z = 2
Mr = 487.36F(000) = 504
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0552 (2) ÅCell parameters from 1523 reflections
b = 12.4499 (5) Åθ = 1.9–21.4°
c = 13.3718 (5) ŵ = 0.30 mm1
α = 67.555 (4)°T = 295 K
β = 80.183 (3)°Block, colourless
γ = 77.273 (3)°0.24 × 0.18 × 0.17 mm
V = 1203.40 (8) Å3
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4468 independent reflections
Radiation source: Enhance (Mo) X-ray Source3013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.912, Tmax = 0.951k = 1515
23521 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
4468 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C28H20Cl2N2O2γ = 77.273 (3)°
Mr = 487.36V = 1203.40 (8) Å3
Triclinic, P1Z = 2
a = 8.0552 (2) ÅMo Kα radiation
b = 12.4499 (5) ŵ = 0.30 mm1
c = 13.3718 (5) ÅT = 295 K
α = 67.555 (4)°0.24 × 0.18 × 0.17 mm
β = 80.183 (3)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4468 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
3013 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.951Rint = 0.034
23521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
4468 reflectionsΔρmin = 0.20 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33663 (7)1.14088 (4)0.22132 (4)0.06059 (17)
Cl20.09000 (6)1.14116 (5)0.47007 (4)0.06921 (19)
N20.21161 (17)1.00876 (13)0.06019 (11)0.0423 (4)
O10.33714 (14)0.86813 (10)0.08785 (9)0.0475 (3)
N10.49540 (17)0.96473 (13)0.36950 (11)0.0448 (4)
C190.13345 (19)0.94637 (15)0.19597 (13)0.0385 (4)
C140.0612 (2)0.98122 (16)0.29553 (13)0.0444 (4)
H140.05440.92510.32410.053*
C20.4134 (2)0.91455 (15)0.22883 (13)0.0400 (4)
C90.5542 (2)0.76123 (16)0.37802 (14)0.0439 (4)
C80.5616 (2)0.84815 (16)0.42010 (14)0.0437 (4)
C30.4784 (2)0.79952 (16)0.27944 (14)0.0446 (4)
H30.47300.74470.24890.054*
C180.1429 (2)1.03427 (15)0.15555 (13)0.0403 (4)
C130.1931 (2)0.82572 (15)0.13202 (13)0.0391 (4)
C10.4259 (2)0.99192 (15)0.28090 (14)0.0416 (4)
C100.3332 (2)0.96331 (15)0.12404 (13)0.0430 (4)
H10A0.21601.00090.13460.052*
H10B0.39561.02180.07000.052*
C120.2581 (2)0.80213 (15)0.03618 (13)0.0412 (4)
C70.6397 (2)0.81471 (18)0.51636 (14)0.0537 (5)
H70.64550.87130.54460.064*
C110.2656 (2)0.89904 (16)0.00647 (13)0.0407 (4)
C150.0018 (2)1.09715 (17)0.34893 (13)0.0487 (5)
C170.0794 (2)1.15241 (16)0.21340 (15)0.0521 (5)
H170.08481.21030.18670.062*
C160.0096 (2)1.18333 (17)0.30877 (15)0.0565 (5)
H160.03271.26200.34670.068*
C60.7064 (2)0.70026 (18)0.56792 (15)0.0588 (5)
H60.75800.67970.63130.071*
C200.1809 (2)0.72977 (15)0.17002 (13)0.0418 (4)
C260.3230 (3)0.67904 (17)0.03888 (15)0.0570 (5)
C40.6242 (2)0.64294 (17)0.43520 (15)0.0542 (5)
H40.61850.58500.40860.065*
C50.7000 (2)0.61141 (18)0.52858 (15)0.0571 (5)
C250.0585 (3)0.65958 (17)0.12159 (15)0.0589 (5)
H250.01410.66950.06260.071*
C210.2876 (2)0.71344 (18)0.25780 (15)0.0588 (5)
H210.37040.76080.29180.071*
O20.2265 (2)0.62082 (15)0.10414 (13)0.0992 (6)
C220.2719 (3)0.6277 (2)0.29494 (18)0.0738 (6)
H220.34510.61690.35340.089*
C230.1503 (3)0.5586 (2)0.2469 (2)0.0773 (7)
H230.14010.50100.27270.093*
C240.0425 (3)0.57386 (19)0.16021 (19)0.0754 (7)
H240.04110.52680.12750.090*
C270.5116 (3)0.6362 (2)0.0300 (2)0.0923 (8)
H27A0.53830.56060.08600.138*
H27B0.57030.69130.03810.138*
H27C0.54740.62930.03990.138*
C280.7750 (3)0.48492 (19)0.58949 (19)0.0845 (7)
H28A0.76240.43630.55120.127*
H28B0.71620.45880.66110.127*
H28C0.89410.47930.59500.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0836 (4)0.0442 (3)0.0574 (3)0.0070 (2)0.0237 (3)0.0171 (2)
Cl20.0722 (4)0.0812 (4)0.0445 (3)0.0019 (3)0.0246 (2)0.0100 (3)
N20.0451 (8)0.0450 (10)0.0386 (8)0.0081 (7)0.0068 (7)0.0157 (7)
O10.0620 (8)0.0483 (8)0.0390 (7)0.0093 (6)0.0166 (6)0.0181 (6)
N10.0521 (9)0.0484 (10)0.0398 (8)0.0080 (7)0.0091 (7)0.0205 (8)
C190.0351 (9)0.0472 (11)0.0334 (9)0.0073 (8)0.0036 (7)0.0144 (8)
C140.0439 (10)0.0534 (12)0.0373 (10)0.0080 (9)0.0052 (8)0.0175 (9)
C20.0401 (9)0.0486 (11)0.0359 (9)0.0117 (8)0.0032 (8)0.0181 (9)
C90.0456 (10)0.0503 (12)0.0403 (10)0.0063 (9)0.0064 (8)0.0211 (9)
C80.0440 (10)0.0524 (12)0.0388 (10)0.0068 (9)0.0052 (8)0.0212 (9)
C30.0507 (10)0.0484 (12)0.0436 (10)0.0077 (9)0.0069 (8)0.0255 (9)
C180.0377 (9)0.0459 (11)0.0373 (10)0.0078 (8)0.0043 (8)0.0140 (9)
C130.0386 (9)0.0460 (11)0.0347 (9)0.0119 (8)0.0030 (7)0.0144 (8)
C10.0444 (10)0.0426 (10)0.0401 (10)0.0088 (8)0.0049 (8)0.0160 (8)
C100.0498 (10)0.0458 (11)0.0398 (10)0.0109 (8)0.0059 (8)0.0200 (9)
C120.0463 (10)0.0434 (11)0.0353 (9)0.0123 (8)0.0066 (8)0.0119 (8)
C70.0605 (12)0.0627 (14)0.0458 (11)0.0061 (10)0.0136 (9)0.0270 (10)
C110.0410 (10)0.0496 (12)0.0334 (9)0.0115 (8)0.0052 (8)0.0143 (9)
C150.0459 (10)0.0596 (13)0.0349 (10)0.0052 (9)0.0093 (8)0.0105 (9)
C170.0589 (12)0.0437 (11)0.0539 (12)0.0052 (9)0.0116 (10)0.0171 (10)
C160.0598 (12)0.0473 (12)0.0517 (12)0.0009 (9)0.0127 (10)0.0074 (10)
C60.0615 (12)0.0701 (15)0.0443 (11)0.0030 (11)0.0170 (9)0.0196 (11)
C200.0495 (10)0.0418 (10)0.0359 (9)0.0069 (9)0.0151 (8)0.0116 (8)
C260.0881 (16)0.0481 (12)0.0417 (11)0.0198 (12)0.0261 (11)0.0109 (10)
C40.0634 (12)0.0479 (12)0.0554 (12)0.0011 (10)0.0138 (10)0.0241 (10)
C50.0597 (12)0.0544 (13)0.0519 (12)0.0025 (10)0.0130 (10)0.0139 (10)
C250.0715 (13)0.0595 (13)0.0526 (12)0.0254 (11)0.0058 (10)0.0200 (11)
C210.0648 (12)0.0685 (14)0.0541 (12)0.0164 (11)0.0020 (10)0.0328 (11)
O20.1195 (14)0.0826 (12)0.0773 (11)0.0532 (11)0.0305 (10)0.0200 (10)
C220.0899 (16)0.0798 (17)0.0691 (15)0.0104 (14)0.0101 (13)0.0470 (14)
C230.1044 (18)0.0630 (15)0.0848 (17)0.0105 (14)0.0340 (15)0.0405 (14)
C240.0909 (16)0.0651 (16)0.0809 (17)0.0361 (13)0.0186 (14)0.0211 (13)
C270.0977 (19)0.0612 (15)0.0880 (18)0.0178 (13)0.0256 (14)0.0039 (13)
C280.1036 (18)0.0600 (15)0.0795 (16)0.0047 (13)0.0368 (14)0.0123 (13)
Geometric parameters (Å, º) top
Cl1—C11.7523 (18)C7—H70.9300
Cl2—C151.7388 (17)C15—C161.387 (3)
N2—C111.291 (2)C17—C161.366 (2)
N2—C181.374 (2)C17—H170.9300
O1—C111.3603 (19)C16—H160.9300
O1—C101.4336 (19)C6—C51.408 (3)
N1—C11.292 (2)C6—H60.9300
N1—C81.372 (2)C20—C251.373 (2)
C19—C181.413 (2)C20—C211.385 (2)
C19—C141.418 (2)C26—O21.194 (2)
C19—C131.435 (2)C26—C271.495 (3)
C14—C151.359 (2)C4—C51.366 (2)
C14—H140.9300C4—H40.9300
C2—C31.354 (2)C5—C281.509 (3)
C2—C11.415 (2)C25—C241.388 (3)
C2—C101.495 (2)C25—H250.9300
C9—C41.412 (2)C21—C221.374 (3)
C9—C81.413 (2)C21—H210.9300
C9—C31.416 (2)C22—C231.359 (3)
C8—C71.406 (2)C22—H220.9300
C3—H30.9300C23—C241.373 (3)
C18—C171.399 (2)C23—H230.9300
C13—C121.370 (2)C24—H240.9300
C13—C201.492 (2)C27—H27A0.9600
C10—H10A0.9700C27—H27B0.9600
C10—H10B0.9700C27—H27C0.9600
C12—C111.422 (2)C28—H28A0.9600
C12—C261.510 (2)C28—H28B0.9600
C7—C61.354 (3)C28—H28C0.9600
C11—N2—C18116.95 (14)C16—C17—C18120.51 (17)
C11—O1—C10115.17 (13)C16—C17—H17119.7
C1—N1—C8116.89 (14)C18—C17—H17119.7
C18—C19—C14118.60 (16)C17—C16—C15119.85 (18)
C18—C19—C13117.98 (14)C17—C16—H16120.1
C14—C19—C13123.39 (15)C15—C16—H16120.1
C15—C14—C19119.59 (16)C7—C6—C5122.07 (18)
C15—C14—H14120.2C7—C6—H6119.0
C19—C14—H14120.2C5—C6—H6119.0
C3—C2—C1115.83 (15)C25—C20—C21118.83 (17)
C3—C2—C10124.90 (15)C25—C20—C13120.46 (15)
C1—C2—C10119.26 (15)C21—C20—C13120.64 (16)
C4—C9—C8118.56 (16)O2—C26—C27122.3 (2)
C4—C9—C3124.18 (16)O2—C26—C12120.49 (19)
C8—C9—C3117.25 (16)C27—C26—C12117.21 (18)
N1—C8—C7118.82 (16)C5—C4—C9121.69 (17)
N1—C8—C9121.91 (15)C5—C4—H4119.2
C7—C8—C9119.27 (17)C9—C4—H4119.2
C2—C3—C9121.12 (16)C4—C5—C6118.33 (18)
C2—C3—H3119.4C4—C5—C28121.61 (19)
C9—C3—H3119.4C6—C5—C28120.06 (18)
N2—C18—C17117.78 (15)C20—C25—C24120.35 (19)
N2—C18—C19122.61 (15)C20—C25—H25119.8
C17—C18—C19119.61 (15)C24—C25—H25119.8
C12—C13—C19118.40 (15)C22—C21—C20120.46 (19)
C12—C13—C20121.80 (15)C22—C21—H21119.8
C19—C13—C20119.80 (14)C20—C21—H21119.8
N1—C1—C2126.97 (16)C23—C22—C21120.5 (2)
N1—C1—Cl1115.41 (13)C23—C22—H22119.8
C2—C1—Cl1117.62 (13)C21—C22—H22119.8
O1—C10—C2108.45 (14)C22—C23—C24120.0 (2)
O1—C10—H10A110.0C22—C23—H23120.0
C2—C10—H10A110.0C24—C23—H23120.0
O1—C10—H10B110.0C23—C24—C25119.9 (2)
C2—C10—H10B110.0C23—C24—H24120.1
H10A—C10—H10B108.4C25—C24—H24120.1
C13—C12—C11118.04 (16)C26—C27—H27A109.5
C13—C12—C26123.48 (15)C26—C27—H27B109.5
C11—C12—C26118.48 (15)H27A—C27—H27B109.5
C6—C7—C8120.07 (18)C26—C27—H27C109.5
C6—C7—H7120.0H27A—C27—H27C109.5
C8—C7—H7120.0H27B—C27—H27C109.5
N2—C11—O1119.80 (15)C5—C28—H28A109.5
N2—C11—C12125.97 (15)C5—C28—H28B109.5
O1—C11—C12114.24 (15)H28A—C28—H28B109.5
C14—C15—C16121.83 (17)C5—C28—H28C109.5
C14—C15—Cl2120.19 (15)H28A—C28—H28C109.5
C16—C15—Cl2117.97 (15)H28B—C28—H28C109.5
C18—C19—C14—C150.5 (2)C18—N2—C11—C121.0 (2)
C13—C19—C14—C15177.48 (14)C10—O1—C11—N24.9 (2)
C1—N1—C8—C7179.53 (15)C10—O1—C11—C12175.04 (13)
C1—N1—C8—C90.2 (2)C13—C12—C11—N22.2 (3)
C4—C9—C8—N1179.55 (15)C26—C12—C11—N2178.15 (16)
C3—C9—C8—N11.3 (2)C13—C12—C11—O1177.87 (13)
C4—C9—C8—C70.7 (2)C26—C12—C11—O11.7 (2)
C3—C9—C8—C7178.42 (15)C19—C14—C15—C160.1 (3)
C1—C2—C3—C90.3 (2)C19—C14—C15—Cl2179.06 (11)
C10—C2—C3—C9179.17 (15)N2—C18—C17—C16179.97 (15)
C4—C9—C3—C2179.92 (16)C19—C18—C17—C160.4 (2)
C8—C9—C3—C21.0 (2)C18—C17—C16—C150.2 (3)
C11—N2—C18—C17178.29 (14)C14—C15—C16—C170.4 (3)
C11—N2—C18—C191.3 (2)Cl2—C15—C16—C17179.46 (13)
C14—C19—C18—N2179.64 (14)C8—C7—C6—C50.3 (3)
C13—C19—C18—N22.2 (2)C12—C13—C20—C2574.1 (2)
C14—C19—C18—C170.8 (2)C19—C13—C20—C25105.04 (19)
C13—C19—C18—C17177.35 (14)C12—C13—C20—C21108.88 (19)
C18—C19—C13—C120.9 (2)C19—C13—C20—C2172.0 (2)
C14—C19—C13—C12178.94 (14)C13—C12—C26—O284.5 (2)
C18—C19—C13—C20178.25 (14)C11—C12—C26—O295.9 (2)
C14—C19—C13—C200.2 (2)C13—C12—C26—C2797.5 (2)
C8—N1—C1—C21.4 (3)C11—C12—C26—C2782.1 (2)
C8—N1—C1—Cl1177.98 (11)C8—C9—C4—C50.9 (3)
C3—C2—C1—N11.6 (3)C3—C9—C4—C5178.22 (16)
C10—C2—C1—N1177.90 (15)C9—C4—C5—C60.4 (3)
C3—C2—C1—Cl1177.69 (12)C9—C4—C5—C28179.89 (17)
C10—C2—C1—Cl12.8 (2)C7—C6—C5—C40.2 (3)
C11—O1—C10—C2179.04 (12)C7—C6—C5—C28179.53 (19)
C3—C2—C10—O10.1 (2)C21—C20—C25—C240.0 (3)
C1—C2—C10—O1179.58 (13)C13—C20—C25—C24177.12 (18)
C19—C13—C12—C111.1 (2)C25—C20—C21—C220.6 (3)
C20—C13—C12—C11179.73 (14)C13—C20—C21—C22177.68 (18)
C19—C13—C12—C26179.30 (15)C20—C21—C22—C230.8 (3)
C20—C13—C12—C260.1 (3)C21—C22—C23—C240.3 (4)
N1—C8—C7—C6179.90 (15)C22—C23—C24—C250.2 (4)
C9—C8—C7—C60.2 (3)C20—C25—C24—C230.4 (3)
C18—N2—C11—O1179.12 (13)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.932.392.735 (2)101
C24—H24···O2i0.932.513.392 (3)157
C10—H10A···Cg4ii0.972.673.4430 (18)137
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC28H20Cl2N2O2
Mr487.36
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.0552 (2), 12.4499 (5), 13.3718 (5)
α, β, γ (°)67.555 (4), 80.183 (3), 77.273 (3)
V3)1203.40 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.24 × 0.18 × 0.17
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.912, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
23521, 4468, 3013
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.05
No. of reflections4468
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.932.392.735 (2)101
C24—H24···O2i0.932.513.392 (3)157
C10—H10A···Cg4ii0.972.673.4430 (18)137
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJayashree, B. S., Thomas, S. & Nayak, Y. (2010). Med. Chem. Res. 19, 193–209.  Web of Science CrossRef CAS Google Scholar
First citationJoseph, B., Darro, F., Behard, A., Lesur, B., Collignon, F., Decaestecker, C., Frydman, A., Guillaumet, G. & Kiss, R. (2002). J. Med. Chem. 45, 2543–2555.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o972–o973.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Roopan, S. M., Kumar, R., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o1607–o1608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Comput. Chem. 7, 95–98.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161–169.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUkita, C. & Mizuno, D. (1960). Chem. Pharm. Bull. 8, 1016–1020.  CrossRef Google Scholar
First citationXiao, Z., Waters, N. C., Woodard, C. L., Li, Z. & Li, P. K. (2001). Bioorg. Med. Chem. Lett. 11, 2875–2878.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1693-o1694
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds