organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1788-o1789

3-{2-[2-(Di­phenyl­methyl­ene)hydrazin­yl]thia­zol-4-yl}-2H-chromen-2-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 June 2010; accepted 18 June 2010; online 26 June 2010)

In the title compound, C25H17N3O2S, the coumarin ring system is essentially planar with a maximum deviation of 0.019 (2) Å. A weak intra­molecular C—H⋯O hydrogen bond stabilizes the mol­ecular structure, so that the coumarin plane is approximately coplanar with the thia­zole ring, making a dihedral angle of 2.5 (10)°. The two phenyl rings are nearly perpendicular to each other, with a dihedral angle of 81.44 (12)°. In the crystal structure, the mol­ecules are linked into an infinite chain along the b axis by inter­molecular C—H⋯O hydrogen bonds. Weak C—H⋯π inter­actions are observed between the chains.

Related literature

For applications of coumarin derivatives, see: Tassies et al. (2002[Tassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). Haematologica, 87, 1185-1191.]); Laffitte et al. (2002[Laffitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). Biochemistry, 41, 7217-7223.]); Weber et al. (1998[Weber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol. 99, 193-206.]); Finn et al. (2004[Finn, G. J., Creaven, B. S. & Egan, D. A. (2004). Cancer Lett. 214, 43-54.]); Kimura et al. (1985[Kimura, Y., Okuda, H., Arichi, S., Baba, K. & Kozawa, M. (1985). Biochim. Biophys. Acta, 834, 224-229.]). For applications of amino­thia­zoles derivatives, see: Hiremath et al. (1992[Hiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc. 69, 87-89.]); Karah et al. (1998[Karah, N., Terzioglu, N. & Gursoy, A. (1998). Arzneim. Forsch. Drug Res. 48, 758-763.]); Jayashree et al. (2005[Jayashree, B. S., Anuradha, D. & Venugopala, N. K. (2005). Asian J. Chem. 17, 2093-2097.]). For related structures, see: Arshad, Osman, Chan et al. (2010a[Arshad, A., Osman, H., Chan, K. L., Goh, J. H. & Fun, H.-K. (2010a). Acta Cryst. E66, o1491-o1492.],b[Arshad, A., Osman, H., Chan, K. L., Goh, J. H. & Fun, H.-K. (2010b). Acta Cryst. E66, o1498-o1499.]); Arshad, Osman, Lam et al. (2010[Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446-o1447.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). The syntheses of benzophenone thio­semicarbazone and 3-(ω-bromo­acet­yl)coumarin are described by Lobana et al. (2006[Lobana, T. S., Khanna, S., Butcher, R. J., Hunter, A. D. & Zeller, M. (2006). Polyhedron, 25, 2755-2763.]) and Siddiqui et al. (2009[Siddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161-167.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C25H17N3O2S

  • Mr = 423.48

  • Monoclinic, P 21 /c

  • a = 13.8705 (18) Å

  • b = 12.9101 (17) Å

  • c = 11.8534 (16) Å

  • β = 107.563 (2)°

  • V = 2023.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.28 × 0.13 × 0.04 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.993

  • 17920 measured reflections

  • 4181 independent reflections

  • 2909 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.125

  • S = 1.04

  • 4181 reflections

  • 284 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C14–C19 and C2–C7 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.93 2.46 3.377 (3) 168
C11—H11A⋯O2 0.93 2.30 2.857 (3) 118
C21—H21ACg1ii 0.93 2.49 3.387 (3) 162
C24—H24ACg2iii 0.93 2.78 3.536 (3) 139
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) -x+1, -y, -z+2; (iii) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarin derivatives having pronounced biological activities are used as anticoagulants (Tassies et al., 2002), antibacterial (Laffitte et al., 2002), cytotoxic (Weber et al., 1998), free radical scavengers (Finn et al., 2004) and enzyme inhibiting (Kimura et al., 1985) agents. Moreover, aminothiazoles derivatives have been reported to exhibit significant antifungal (Hiremath et al., 1992), anti-tuberculosis (Karah et al., 1998) and anti-inflammatory (Jayashree et al., 2005) activities. The title compound is a new coumarinyl thiazolyl hydrazone derivative. We present here its crystal structure.

The geometry parameters of the title compound (Fig. 1) are comparable to those related structures (Arshad, Osman, Chan et al., 2010a,b; Arshad, Osman, Lam et al., 2010). The coumarin group is essentially planar (O1/C1–C9) with a maximum derivation of 0.019 Å at atom C7. The mean plane is approximately coplanar with the thiazole ring (C10–C11–S1–C12–N1) with a dihedral angle being 2.5 (10)°. The other two benzene rings are nearly perpendicular to each other with a dihedral angle being 81.44 (12)°.

In the crystal structure, the molecules are linked into infinite chains along b axis by the intermolecular C6—H6A···O1 hydrogen bonds and stabilized by the weak C—H···π interactions (Fig. 2, Table 1). A weak intramolecular C11—H11A···O2 hydrogen bond stabilizes the molecular structure.

Related literature top

For applications of coumarin derivatives, see: Tassies et al. (2002); Laffitte et al. (2002); Weber et al. (1998); Finn et al. (2004); Kimura et al. (1985). For applications of aminothiazoles derivatives, see: Hiremath et al. (1992); Karah et al. (1998); Jayashree et al. (2005). For related structures, see: Arshad, Osman, Chan et al. (2010a,b); Arshad, Osman, Lam et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). The syntheses of benzophenone thiosemicarbazone and 3-(ω-bromoacetyl)coumarin are described by Lobana et al. (2006) and Siddiqui et al. (2009), respectively.

For related literature, see: .

Experimental top

Benzophenone thiosemicarbazone (Lobana et al., 2006) and 3-(ω-bromoacetyl)coumarin (Siddiqui et al., 2009) were synthesized as reported in the literature. A solution of 3-(ω-bromoacetyl)coumarin (2.5 mmol) and benzophenone thiosemicarbazone (2.5 mmol) in chloroform-ethanol (2:1) was refluxed for 1 h. Precipitates formed were filtered and boiled with water containing sodium acetate. The title compound was purified by recrystallization with ethanol-chloroform (1:3) as dark brown feather-like crystals.

Refinement top

H1N2 hydrogen atom was located in a difference Fourier map and was refined freely. The rest of H atoms were positioned geometrically (C–H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed down the b axis, showing the molecules are linked into chains along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
3-{2-[2-(Diphenylmethylene)hydrazinyl]thiazol-4-yl}-2H-chromen-2-one top
Crystal data top
C25H17N3O2SF(000) = 880
Mr = 423.48Dx = 1.390 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2695 reflections
a = 13.8705 (18) Åθ = 2.2–25.7°
b = 12.9101 (17) ŵ = 0.19 mm1
c = 11.8534 (16) ÅT = 100 K
β = 107.563 (2)°Plate, brown
V = 2023.6 (5) Å30.28 × 0.13 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4181 independent reflections
Radiation source: fine-focus sealed tube2909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.949, Tmax = 0.993k = 1616
17920 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0488P)2 + 1.1918P]
where P = (Fo2 + 2Fc2)/3
4181 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C25H17N3O2SV = 2023.6 (5) Å3
Mr = 423.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8705 (18) ŵ = 0.19 mm1
b = 12.9101 (17) ÅT = 100 K
c = 11.8534 (16) Å0.28 × 0.13 × 0.04 mm
β = 107.563 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4181 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2909 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.993Rint = 0.067
17920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
4181 reflectionsΔρmin = 0.32 e Å3
284 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27268 (5)0.29137 (5)0.91250 (6)0.02688 (18)
O10.03690 (14)0.49303 (13)1.21227 (16)0.0322 (5)
O20.12420 (15)0.53063 (13)1.09019 (17)0.0375 (5)
N10.18366 (15)0.20621 (15)1.05262 (17)0.0216 (4)
N20.25985 (16)0.08768 (16)0.95524 (19)0.0257 (5)
N30.32315 (15)0.07961 (15)0.88597 (17)0.0230 (5)
C10.09314 (19)0.46244 (19)1.1393 (2)0.0267 (6)
C20.00360 (19)0.42446 (19)1.2744 (2)0.0265 (6)
C30.0574 (2)0.4642 (2)1.3458 (3)0.0377 (7)
H3A0.06720.53521.34990.045*
C40.0961 (2)0.3960 (2)1.4110 (3)0.0355 (7)
H4A0.13130.42181.46040.043*
C50.08363 (19)0.2904 (2)1.4042 (2)0.0274 (6)
H5A0.11040.24561.44850.033*
C60.03123 (17)0.25172 (19)1.3315 (2)0.0225 (5)
H6A0.02310.18051.32660.027*
C70.00990 (17)0.31838 (18)1.2649 (2)0.0209 (5)
C80.06701 (18)0.28439 (18)1.1895 (2)0.0213 (5)
H8A0.07600.21371.18170.026*
C90.10832 (17)0.35054 (18)1.1294 (2)0.0212 (5)
C100.16787 (18)0.31334 (18)1.0546 (2)0.0209 (5)
C110.20939 (19)0.37041 (19)0.9838 (2)0.0268 (6)
H11A0.20420.44200.97530.032*
C120.23598 (18)0.18608 (18)0.9809 (2)0.0225 (5)
C130.35407 (18)0.01140 (18)0.8675 (2)0.0210 (5)
C140.42271 (18)0.01483 (18)0.7927 (2)0.0213 (5)
C150.42459 (18)0.06486 (19)0.7143 (2)0.0232 (5)
H15A0.37840.11890.70370.028*
C160.49430 (19)0.0646 (2)0.6520 (2)0.0261 (6)
H16A0.49490.11840.60000.031*
C170.5631 (2)0.0155 (2)0.6670 (2)0.0288 (6)
H17A0.60970.01560.62470.035*
C180.56302 (19)0.0957 (2)0.7446 (2)0.0284 (6)
H18A0.60980.14920.75490.034*
C190.49287 (18)0.09584 (19)0.8069 (2)0.0237 (5)
H19A0.49230.15000.85850.028*
C200.33051 (17)0.11039 (18)0.9191 (2)0.0210 (5)
C210.36721 (19)0.12891 (19)1.0402 (2)0.0268 (6)
H21A0.40180.07701.09070.032*
C220.3526 (2)0.2240 (2)1.0859 (2)0.0288 (6)
H22A0.37780.23601.16690.035*
C230.30028 (19)0.3019 (2)1.0112 (2)0.0273 (6)
H23A0.29160.36641.04170.033*
C240.26132 (19)0.28293 (19)0.8913 (2)0.0282 (6)
H24A0.22500.33420.84110.034*
C250.27632 (18)0.18767 (19)0.8457 (2)0.0238 (5)
H25A0.24980.17530.76490.029*
H1N20.2549 (19)0.034 (2)1.003 (2)0.027 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0327 (4)0.0239 (3)0.0311 (4)0.0054 (3)0.0203 (3)0.0020 (3)
O10.0445 (11)0.0185 (9)0.0433 (11)0.0005 (8)0.0277 (10)0.0013 (8)
O20.0531 (13)0.0196 (9)0.0524 (12)0.0013 (9)0.0350 (11)0.0020 (9)
N10.0227 (10)0.0206 (10)0.0244 (11)0.0010 (9)0.0116 (9)0.0006 (9)
N20.0305 (12)0.0211 (11)0.0344 (12)0.0012 (9)0.0230 (11)0.0009 (10)
N30.0245 (11)0.0237 (11)0.0260 (11)0.0008 (9)0.0153 (10)0.0015 (9)
C10.0319 (14)0.0208 (13)0.0312 (14)0.0010 (11)0.0153 (13)0.0020 (11)
C20.0302 (14)0.0219 (13)0.0313 (14)0.0006 (11)0.0153 (12)0.0014 (11)
C30.0533 (19)0.0200 (13)0.0517 (18)0.0034 (13)0.0336 (16)0.0029 (13)
C40.0405 (16)0.0312 (15)0.0456 (17)0.0047 (12)0.0292 (15)0.0048 (13)
C50.0262 (13)0.0299 (14)0.0304 (14)0.0022 (11)0.0150 (12)0.0003 (11)
C60.0223 (12)0.0202 (12)0.0254 (13)0.0009 (10)0.0077 (11)0.0005 (10)
C70.0182 (12)0.0224 (13)0.0211 (12)0.0005 (10)0.0046 (10)0.0008 (10)
C80.0208 (12)0.0188 (12)0.0227 (12)0.0003 (10)0.0044 (11)0.0027 (10)
C90.0184 (12)0.0222 (13)0.0220 (12)0.0015 (10)0.0048 (11)0.0036 (10)
C100.0217 (12)0.0184 (12)0.0241 (12)0.0017 (10)0.0091 (11)0.0020 (10)
C110.0329 (14)0.0202 (13)0.0321 (14)0.0029 (11)0.0172 (13)0.0030 (11)
C120.0224 (13)0.0215 (13)0.0262 (13)0.0012 (10)0.0113 (11)0.0002 (10)
C130.0209 (12)0.0231 (13)0.0210 (12)0.0017 (10)0.0094 (11)0.0010 (10)
C140.0237 (13)0.0222 (13)0.0205 (12)0.0039 (10)0.0106 (11)0.0051 (10)
C150.0230 (13)0.0269 (13)0.0182 (12)0.0006 (11)0.0040 (11)0.0019 (10)
C160.0301 (14)0.0316 (14)0.0182 (13)0.0013 (11)0.0096 (12)0.0012 (11)
C170.0310 (14)0.0332 (15)0.0287 (14)0.0007 (12)0.0189 (13)0.0057 (12)
C180.0296 (14)0.0305 (14)0.0298 (14)0.0035 (11)0.0161 (13)0.0047 (11)
C190.0263 (13)0.0237 (13)0.0240 (13)0.0030 (10)0.0119 (12)0.0039 (10)
C200.0196 (12)0.0209 (12)0.0269 (13)0.0007 (10)0.0137 (11)0.0015 (10)
C210.0285 (14)0.0250 (13)0.0283 (14)0.0027 (11)0.0106 (12)0.0017 (11)
C220.0309 (14)0.0321 (15)0.0223 (13)0.0011 (11)0.0062 (12)0.0043 (11)
C230.0279 (14)0.0249 (13)0.0311 (14)0.0021 (11)0.0120 (12)0.0040 (11)
C240.0296 (14)0.0256 (14)0.0312 (15)0.0059 (11)0.0119 (12)0.0043 (11)
C250.0227 (13)0.0306 (14)0.0174 (12)0.0039 (11)0.0052 (11)0.0025 (10)
Geometric parameters (Å, º) top
S1—C111.724 (2)C10—C111.368 (3)
S1—C121.736 (2)C11—H11A0.9300
O1—C21.375 (3)C13—C141.485 (3)
O1—C11.386 (3)C13—C201.495 (3)
O2—C11.205 (3)C14—C151.392 (3)
N1—C121.300 (3)C14—C191.404 (3)
N1—C101.402 (3)C15—C161.382 (3)
N2—C121.370 (3)C15—H15A0.9300
N2—N31.375 (2)C16—C171.382 (3)
N2—H1N20.91 (3)C16—H16A0.9300
N3—C131.292 (3)C17—C181.385 (3)
C1—C91.470 (3)C17—H17A0.9300
C2—C31.385 (3)C18—C191.388 (3)
C2—C71.391 (3)C18—H18A0.9300
C3—C41.382 (4)C19—H19A0.9300
C3—H3A0.9300C20—C251.387 (3)
C4—C51.380 (4)C20—C211.391 (3)
C4—H4A0.9300C21—C221.382 (3)
C5—C61.378 (3)C21—H21A0.9300
C5—H5A0.9300C22—C231.391 (4)
C6—C71.400 (3)C22—H22A0.9300
C6—H6A0.9300C23—C241.382 (4)
C7—C81.430 (3)C23—H23A0.9300
C8—C91.346 (3)C24—C251.384 (3)
C8—H8A0.9300C24—H24A0.9300
C9—C101.464 (3)C25—H25A0.9300
C11—S1—C1288.29 (11)N1—C12—S1116.69 (18)
C2—O1—C1123.27 (19)N2—C12—S1119.88 (16)
C12—N1—C10109.20 (19)N3—C13—C14115.7 (2)
C12—N2—N3116.31 (19)N3—C13—C20125.68 (19)
C12—N2—H1N2119.7 (16)C14—C13—C20118.54 (19)
N3—N2—H1N2119.8 (16)C15—C14—C19118.6 (2)
C13—N3—N2118.33 (19)C15—C14—C13121.4 (2)
O2—C1—O1116.4 (2)C19—C14—C13119.8 (2)
O2—C1—C9126.8 (2)C16—C15—C14120.8 (2)
O1—C1—C9116.8 (2)C16—C15—H15A119.6
O1—C2—C3118.1 (2)C14—C15—H15A119.6
O1—C2—C7120.3 (2)C17—C16—C15120.0 (2)
C3—C2—C7121.6 (2)C17—C16—H16A120.0
C4—C3—C2118.5 (2)C15—C16—H16A120.0
C4—C3—H3A120.7C16—C17—C18120.4 (2)
C2—C3—H3A120.7C16—C17—H17A119.8
C5—C4—C3121.3 (2)C18—C17—H17A119.8
C5—C4—H4A119.3C17—C18—C19119.7 (2)
C3—C4—H4A119.3C17—C18—H18A120.1
C6—C5—C4119.6 (2)C19—C18—H18A120.1
C6—C5—H5A120.2C18—C19—C14120.5 (2)
C4—C5—H5A120.2C18—C19—H19A119.8
C5—C6—C7120.8 (2)C14—C19—H19A119.8
C5—C6—H6A119.6C25—C20—C21119.0 (2)
C7—C6—H6A119.6C25—C20—C13120.1 (2)
C2—C7—C6118.2 (2)C21—C20—C13120.8 (2)
C2—C7—C8117.8 (2)C22—C21—C20120.4 (2)
C6—C7—C8124.1 (2)C22—C21—H21A119.8
C9—C8—C7122.7 (2)C20—C21—H21A119.8
C9—C8—H8A118.6C21—C22—C23120.2 (2)
C7—C8—H8A118.6C21—C22—H22A119.9
C8—C9—C10121.4 (2)C23—C22—H22A119.9
C8—C9—C1119.2 (2)C24—C23—C22119.6 (2)
C10—C9—C1119.4 (2)C24—C23—H23A120.2
C11—C10—N1115.1 (2)C22—C23—H23A120.2
C11—C10—C9127.9 (2)C23—C24—C25120.1 (2)
N1—C10—C9116.96 (19)C23—C24—H24A120.0
C10—C11—S1110.66 (18)C25—C24—H24A120.0
C10—C11—H11A124.7C24—C25—C20120.7 (2)
S1—C11—H11A124.7C24—C25—H25A119.6
N1—C12—N2123.4 (2)C20—C25—H25A119.6
C12—N2—N3—C13174.6 (2)C10—N1—C12—N2176.8 (2)
C2—O1—C1—O2179.9 (2)C10—N1—C12—S11.2 (3)
C2—O1—C1—C90.3 (4)N3—N2—C12—N1174.4 (2)
C1—O1—C2—C3179.2 (3)N3—N2—C12—S17.6 (3)
C1—O1—C2—C70.7 (4)C11—S1—C12—N11.5 (2)
O1—C2—C3—C4178.3 (3)C11—S1—C12—N2176.6 (2)
C7—C2—C3—C41.6 (4)N2—N3—C13—C14179.6 (2)
C2—C3—C4—C51.1 (5)N2—N3—C13—C202.6 (4)
C3—C4—C5—C60.2 (4)N3—C13—C14—C1522.3 (3)
C4—C5—C6—C70.3 (4)C20—C13—C14—C15160.5 (2)
O1—C2—C7—C6178.9 (2)N3—C13—C14—C19152.8 (2)
C3—C2—C7—C61.0 (4)C20—C13—C14—C1924.5 (3)
O1—C2—C7—C80.2 (4)C19—C14—C15—C160.2 (4)
C3—C2—C7—C8179.6 (3)C13—C14—C15—C16174.9 (2)
C5—C6—C7—C20.0 (4)C14—C15—C16—C170.1 (4)
C5—C6—C7—C8178.6 (2)C15—C16—C17—C180.3 (4)
C2—C7—C8—C90.7 (4)C16—C17—C18—C190.5 (4)
C6—C7—C8—C9177.9 (2)C17—C18—C19—C140.6 (4)
C7—C8—C9—C10178.9 (2)C15—C14—C19—C180.5 (4)
C7—C8—C9—C11.1 (4)C13—C14—C19—C18174.7 (2)
O2—C1—C9—C8179.1 (3)N3—C13—C20—C25117.4 (3)
O1—C1—C9—C80.6 (4)C14—C13—C20—C2565.7 (3)
O2—C1—C9—C100.9 (4)N3—C13—C20—C2166.3 (3)
O1—C1—C9—C10179.4 (2)C14—C13—C20—C21110.6 (3)
C12—N1—C10—C110.1 (3)C25—C20—C21—C222.0 (3)
C12—N1—C10—C9178.9 (2)C13—C20—C21—C22174.3 (2)
C8—C9—C10—C11176.1 (3)C20—C21—C22—C230.5 (4)
C1—C9—C10—C113.9 (4)C21—C22—C23—C241.3 (4)
C8—C9—C10—N12.8 (3)C22—C23—C24—C251.4 (4)
C1—C9—C10—N1177.2 (2)C23—C24—C25—C200.1 (4)
N1—C10—C11—S11.0 (3)C21—C20—C25—C241.9 (3)
C9—C10—C11—S1179.9 (2)C13—C20—C25—C24174.5 (2)
C12—S1—C11—C101.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C19 and C2–C7 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.932.463.377 (3)168
C11—H11A···O20.932.302.857 (3)118
C21—H21A···Cg1ii0.932.493.387 (3)162
C24—H24A···Cg2iii0.932.783.536 (3)139
Symmetry codes: (i) x, y1/2, z+5/2; (ii) x+1, y, z+2; (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC25H17N3O2S
Mr423.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.8705 (18), 12.9101 (17), 11.8534 (16)
β (°) 107.563 (2)
V3)2023.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.28 × 0.13 × 0.04
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.949, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
17920, 4181, 2909
Rint0.067
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.04
No. of reflections4181
No. of parameters284
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C19 and C2–C7 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.93002.46003.377 (3)168.00
C11—H11A···O20.93002.30002.857 (3)118.00
C21—H21A···Cg1ii0.932.493.387 (3)162
C24—H24A···Cg2iii0.932.783.536 (3)139
Symmetry codes: (i) x, y1/2, z+5/2; (ii) x+1, y, z+2; (iii) x, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AA, HO and KLC thank the Malaysian Government and Universiti Sains Malaysia (USM) for a grant (RU/1001/PKIMIA/811133) to conduct this work. AA thanks the Pakistan Government and PCSIR for financial scholarship support. HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CSY also thanks USM for the award of a USM Fellowship.

References

First citationArshad, A., Osman, H., Chan, K. L., Goh, J. H. & Fun, H.-K. (2010a). Acta Cryst. E66, o1491–o1492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, A., Osman, H., Chan, K. L., Goh, J. H. & Fun, H.-K. (2010b). Acta Cryst. E66, o1498–o1499.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446–o1447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFinn, G. J., Creaven, B. S. & Egan, D. A. (2004). Cancer Lett. 214, 43–54.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc. 69, 87–89.  CAS Google Scholar
First citationJayashree, B. S., Anuradha, D. & Venugopala, N. K. (2005). Asian J. Chem. 17, 2093–2097.  CAS Google Scholar
First citationKarah, N., Terzioglu, N. & Gursoy, A. (1998). Arzneim. Forsch. Drug Res. 48, 758–763.  CAS Google Scholar
First citationKimura, Y., Okuda, H., Arichi, S., Baba, K. & Kozawa, M. (1985). Biochim. Biophys. Acta, 834, 224–229.  CAS PubMed Web of Science Google Scholar
First citationLaffitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). Biochemistry, 41, 7217–7223.  Web of Science CrossRef PubMed Google Scholar
First citationLobana, T. S., Khanna, S., Butcher, R. J., Hunter, A. D. & Zeller, M. (2006). Polyhedron, 25, 2755–2763.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161–167.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). Haematologica, 87, 1185–1191.  Web of Science PubMed CAS Google Scholar
First citationWeber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol. 99, 193–206.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1788-o1789
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds