organic compounds
2,6-Di(pyrrolidin-1-yl)pyridinium chloride monohydrate
aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the organic cation of the title compound, C13H20N3+·Cl−·H2O, the two pyrrolidine rings adopt twisted conformations. The pyridine ring makes dihedral angles of 14.57 (6) and 23.96 (6)° with the mean planes of the pyrrolidine rings. In the pairs of bifurcated intermolecular O—H⋯Cl hydrogen bonds link the water molecules and chloride anions into an R44(8) ring motif. Intermolecular N—H⋯Cl, C—H⋯Cl and C—H⋯O hydrogen bonds further interconnect these rings with the organic cations into a two-dimensional network parallel to the bc plane.
Related literature
For general background to and applications of the title compound, see: Cornell et al. (2003); Fetzner (1998); Padoley et al. (2008); Xue & Warshawsky (2005); Zhu et al. (2003). For puckering analysis and ring conformations, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987). For related structures, see: Al-Dajani et al. (2009); Rubin-Preminger & Englert (2007). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681002427X/is2565sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681002427X/is2565Isup2.hkl
In a two-neck round bottom flask, pyridine (0.01 mol, 1.0 g) was dissolved in THF (50 ml). The flask was connected to dropping funnel containing anhydrous aluminum chloride (2.7 g, 0.02 mol) dissolved in THF (25 ml) and ended with anhydrous calcium chloride drying tube. In an ice bath, the aluminum chloride solution was added in small portions and the temperature was maintained between 273–278 K during the addition. The mixture was refluxed for 30 mins at 323–328 K under dry condition. Pyrrolidine (0.02 mol, 1.5 g) was added in small portions to the formed red colour reaction mixture. After stirring for 1 h, the mixture was decanted on ice water and the organic layer was extracted with butanol. The solvent was evaporated by using the rotary evaporator. Deep brown single crystals were formed after one week at room temperature and washed with methanol and dried at room temperature.
H atoms bound to N and O atoms were located in a difference Fourier map (N—H = 0.84 and O—H = 0.82–0.91 Å) and constrained to ride with their parent atoms, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). The remaining H atoms were placed in calculated positions (C—H = 0.93 or 0.97 Å), with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C13H20N3+·Cl−·H2O | F(000) = 584 |
Mr = 271.79 | Dx = 1.282 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9025 reflections |
a = 11.5728 (15) Å | θ = 3.6–35.1° |
b = 12.2724 (16) Å | µ = 0.27 mm−1 |
c = 11.3622 (16) Å | T = 100 K |
β = 119.214 (2)° | Block, brown |
V = 1408.5 (3) Å3 | 0.36 × 0.25 × 0.21 mm |
Z = 4 |
Bruker APEXII DUO CCD area-detector diffractometer | 5073 independent reflections |
Radiation source: fine-focus sealed tube | 4506 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 32.5°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −17→17 |
Tmin = 0.911, Tmax = 0.947 | k = −18→18 |
20960 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.0709P)2 + 0.155P] where P = (Fo2 + 2Fc2)/3 |
5073 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.85 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
C13H20N3+·Cl−·H2O | V = 1408.5 (3) Å3 |
Mr = 271.79 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.5728 (15) Å | µ = 0.27 mm−1 |
b = 12.2724 (16) Å | T = 100 K |
c = 11.3622 (16) Å | 0.36 × 0.25 × 0.21 mm |
β = 119.214 (2)° |
Bruker APEXII DUO CCD area-detector diffractometer | 5073 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4506 reflections with I > 2σ(I) |
Tmin = 0.911, Tmax = 0.947 | Rint = 0.028 |
20960 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.26 | Δρmax = 0.85 e Å−3 |
5073 reflections | Δρmin = −0.47 e Å−3 |
163 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.19322 (2) | 0.62909 (2) | 0.66837 (2) | 0.01949 (8) | |
N1 | 0.36262 (7) | 0.57142 (7) | 1.04747 (8) | 0.01531 (15) | |
N2 | 0.14198 (7) | 0.52984 (6) | 0.90169 (8) | 0.01275 (14) | |
H1N2 | 0.1409 | 0.5734 | 0.8446 | 0.015* | |
N3 | −0.08202 (7) | 0.50501 (7) | 0.75519 (8) | 0.01540 (15) | |
C1 | 0.34608 (9) | 0.68840 (8) | 1.01429 (10) | 0.01729 (17) | |
H1A | 0.2653 | 0.7163 | 1.0090 | 0.021* | |
H1B | 0.3446 | 0.7022 | 0.9295 | 0.021* | |
C2 | 0.46810 (9) | 0.73903 (9) | 1.13225 (11) | 0.0226 (2) | |
H2A | 0.4514 | 0.7568 | 1.2058 | 0.027* | |
H2B | 0.4954 | 0.8045 | 1.1045 | 0.027* | |
C3 | 0.57226 (10) | 0.64951 (9) | 1.17295 (12) | 0.0231 (2) | |
H3A | 0.6087 | 0.6468 | 1.1121 | 0.028* | |
H3B | 0.6437 | 0.6601 | 1.2644 | 0.028* | |
C4 | 0.49368 (9) | 0.54686 (9) | 1.16178 (10) | 0.02016 (19) | |
H4A | 0.5325 | 0.4835 | 1.1435 | 0.024* | |
H4B | 0.4888 | 0.5344 | 1.2436 | 0.024* | |
C5 | 0.26136 (9) | 0.50134 (7) | 1.01015 (9) | 0.01296 (16) | |
C6 | 0.27123 (9) | 0.40293 (8) | 1.07522 (10) | 0.01685 (17) | |
H6A | 0.3516 | 0.3802 | 1.1467 | 0.020* | |
C7 | 0.15781 (10) | 0.33922 (8) | 1.03070 (10) | 0.01769 (18) | |
H7A | 0.1637 | 0.2735 | 1.0740 | 0.021* | |
C8 | 0.03737 (10) | 0.36996 (7) | 0.92503 (10) | 0.01668 (18) | |
H8A | −0.0372 | 0.3266 | 0.8984 | 0.020* | |
C9 | 0.02951 (8) | 0.46816 (7) | 0.85822 (9) | 0.01324 (16) | |
C10 | −0.20146 (9) | 0.43731 (9) | 0.69091 (11) | 0.02049 (19) | |
H10A | −0.2389 | 0.4269 | 0.7501 | 0.025* | |
H10B | −0.1827 | 0.3667 | 0.6657 | 0.025* | |
C11 | −0.29411 (10) | 0.50344 (10) | 0.56689 (11) | 0.0251 (2) | |
H11A | −0.3857 | 0.4926 | 0.5440 | 0.030* | |
H11B | −0.2836 | 0.4836 | 0.4900 | 0.030* | |
C12 | −0.25148 (10) | 0.62099 (9) | 0.60917 (11) | 0.0217 (2) | |
H12A | −0.2777 | 0.6675 | 0.5312 | 0.026* | |
H12B | −0.2893 | 0.6492 | 0.6627 | 0.026* | |
C13 | −0.10123 (9) | 0.61292 (8) | 0.69258 (10) | 0.01769 (18) | |
H13A | −0.0603 | 0.6171 | 0.6359 | 0.021* | |
H13B | −0.0654 | 0.6700 | 0.7601 | 0.021* | |
O1W | 0.07681 (10) | 0.38244 (7) | 0.62242 (9) | 0.02792 (19) | |
H1W1 | 0.0986 | 0.4542 | 0.6261 | 0.042* | |
H2W1 | 0.0048 | 0.3828 | 0.5536 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01614 (12) | 0.02374 (14) | 0.01981 (13) | 0.00041 (7) | 0.00973 (10) | 0.00133 (8) |
N1 | 0.0105 (3) | 0.0137 (3) | 0.0163 (3) | −0.0004 (2) | 0.0023 (3) | 0.0012 (3) |
N2 | 0.0111 (3) | 0.0121 (3) | 0.0131 (3) | −0.0003 (2) | 0.0044 (3) | 0.0008 (2) |
N3 | 0.0101 (3) | 0.0150 (3) | 0.0172 (3) | −0.0008 (2) | 0.0036 (3) | −0.0021 (3) |
C1 | 0.0140 (4) | 0.0132 (4) | 0.0203 (4) | −0.0011 (3) | 0.0050 (3) | −0.0005 (3) |
C2 | 0.0140 (4) | 0.0192 (4) | 0.0281 (5) | −0.0034 (3) | 0.0054 (4) | −0.0073 (4) |
C3 | 0.0116 (4) | 0.0236 (5) | 0.0275 (5) | −0.0019 (3) | 0.0045 (4) | −0.0028 (4) |
C4 | 0.0111 (4) | 0.0231 (5) | 0.0189 (4) | 0.0012 (3) | 0.0016 (3) | 0.0022 (3) |
C5 | 0.0115 (3) | 0.0134 (4) | 0.0129 (4) | 0.0006 (3) | 0.0051 (3) | −0.0003 (3) |
C6 | 0.0167 (4) | 0.0154 (4) | 0.0165 (4) | 0.0017 (3) | 0.0066 (3) | 0.0032 (3) |
C7 | 0.0207 (4) | 0.0133 (4) | 0.0207 (4) | 0.0007 (3) | 0.0114 (3) | 0.0023 (3) |
C8 | 0.0171 (4) | 0.0133 (4) | 0.0208 (4) | −0.0020 (3) | 0.0101 (3) | −0.0009 (3) |
C9 | 0.0116 (3) | 0.0128 (4) | 0.0150 (4) | −0.0011 (3) | 0.0063 (3) | −0.0031 (3) |
C10 | 0.0126 (4) | 0.0214 (4) | 0.0242 (5) | −0.0043 (3) | 0.0063 (3) | −0.0079 (4) |
C11 | 0.0119 (4) | 0.0369 (6) | 0.0209 (5) | −0.0010 (4) | 0.0037 (3) | −0.0053 (4) |
C12 | 0.0125 (4) | 0.0310 (5) | 0.0200 (5) | 0.0052 (3) | 0.0066 (3) | 0.0054 (4) |
C13 | 0.0124 (4) | 0.0204 (4) | 0.0189 (4) | 0.0022 (3) | 0.0066 (3) | 0.0034 (3) |
O1W | 0.0333 (4) | 0.0220 (4) | 0.0218 (4) | 0.0079 (3) | 0.0082 (3) | −0.0016 (3) |
N1—C5 | 1.3444 (11) | C5—C6 | 1.3914 (13) |
N1—C4 | 1.4681 (12) | C6—C7 | 1.3935 (14) |
N1—C1 | 1.4729 (13) | C6—H6A | 0.9300 |
N2—C9 | 1.3724 (11) | C7—C8 | 1.3759 (14) |
N2—C5 | 1.3740 (11) | C7—H7A | 0.9300 |
N2—H1N2 | 0.8360 | C8—C9 | 1.4034 (13) |
N3—C9 | 1.3289 (11) | C8—H8A | 0.9300 |
N3—C10 | 1.4659 (12) | C10—C11 | 1.5229 (16) |
N3—C13 | 1.4680 (13) | C10—H10A | 0.9700 |
C1—C2 | 1.5261 (13) | C10—H10B | 0.9700 |
C1—H1A | 0.9700 | C11—C12 | 1.5244 (17) |
C1—H1B | 0.9700 | C11—H11A | 0.9700 |
C2—C3 | 1.5263 (15) | C11—H11B | 0.9700 |
C2—H2A | 0.9700 | C12—C13 | 1.5241 (14) |
C2—H2B | 0.9700 | C12—H12A | 0.9700 |
C3—C4 | 1.5223 (15) | C12—H12B | 0.9700 |
C3—H3A | 0.9700 | C13—H13A | 0.9700 |
C3—H3B | 0.9700 | C13—H13B | 0.9700 |
C4—H4A | 0.9700 | O1W—H1W1 | 0.9117 |
C4—H4B | 0.9700 | O1W—H2W1 | 0.8189 |
C5—N1—C4 | 120.85 (8) | C5—C6—H6A | 120.8 |
C5—N1—C1 | 123.94 (7) | C7—C6—H6A | 120.8 |
C4—N1—C1 | 112.06 (7) | C8—C7—C6 | 122.44 (9) |
C9—N2—C5 | 122.97 (8) | C8—C7—H7A | 118.8 |
C9—N2—H1N2 | 114.9 | C6—C7—H7A | 118.8 |
C5—N2—H1N2 | 119.1 | C7—C8—C9 | 118.56 (9) |
C9—N3—C10 | 121.35 (8) | C7—C8—H8A | 120.7 |
C9—N3—C13 | 125.88 (8) | C9—C8—H8A | 120.7 |
C10—N3—C13 | 112.77 (8) | N3—C9—N2 | 118.17 (8) |
N1—C1—C2 | 102.89 (8) | N3—C9—C8 | 123.19 (8) |
N1—C1—H1A | 111.2 | N2—C9—C8 | 118.64 (8) |
C2—C1—H1A | 111.2 | N3—C10—C11 | 103.05 (9) |
N1—C1—H1B | 111.2 | N3—C10—H10A | 111.2 |
C2—C1—H1B | 111.2 | C11—C10—H10A | 111.2 |
H1A—C1—H1B | 109.1 | N3—C10—H10B | 111.2 |
C1—C2—C3 | 103.21 (8) | C11—C10—H10B | 111.2 |
C1—C2—H2A | 111.1 | H10A—C10—H10B | 109.1 |
C3—C2—H2A | 111.1 | C10—C11—C12 | 103.85 (8) |
C1—C2—H2B | 111.1 | C10—C11—H11A | 111.0 |
C3—C2—H2B | 111.1 | C12—C11—H11A | 111.0 |
H2A—C2—H2B | 109.1 | C10—C11—H11B | 111.0 |
C4—C3—C2 | 102.66 (8) | C12—C11—H11B | 111.0 |
C4—C3—H3A | 111.2 | H11A—C11—H11B | 109.0 |
C2—C3—H3A | 111.2 | C13—C12—C11 | 103.30 (8) |
C4—C3—H3B | 111.2 | C13—C12—H12A | 111.1 |
C2—C3—H3B | 111.2 | C11—C12—H12A | 111.1 |
H3A—C3—H3B | 109.1 | C13—C12—H12B | 111.1 |
N1—C4—C3 | 102.77 (8) | C11—C12—H12B | 111.1 |
N1—C4—H4A | 111.2 | H12A—C12—H12B | 109.1 |
C3—C4—H4A | 111.2 | N3—C13—C12 | 102.53 (8) |
N1—C4—H4B | 111.2 | N3—C13—H13A | 111.3 |
C3—C4—H4B | 111.2 | C12—C13—H13A | 111.3 |
H4A—C4—H4B | 109.1 | N3—C13—H13B | 111.3 |
N1—C5—N2 | 117.40 (8) | C12—C13—H13B | 111.3 |
N1—C5—C6 | 123.70 (8) | H13A—C13—H13B | 109.2 |
N2—C5—C6 | 118.90 (8) | H1W1—O1W—H2W1 | 99.6 |
C5—C6—C7 | 118.41 (9) | ||
C5—N1—C1—C2 | 150.43 (9) | C6—C7—C8—C9 | 1.27 (15) |
C4—N1—C1—C2 | −9.59 (11) | C10—N3—C9—N2 | 171.36 (8) |
N1—C1—C2—C3 | 30.83 (11) | C13—N3—C9—N2 | −8.05 (14) |
C1—C2—C3—C4 | −40.78 (11) | C10—N3—C9—C8 | −9.15 (14) |
C5—N1—C4—C3 | −176.31 (9) | C13—N3—C9—C8 | 171.44 (9) |
C1—N1—C4—C3 | −15.59 (11) | C5—N2—C9—N3 | 177.66 (8) |
C2—C3—C4—N1 | 34.27 (11) | C5—N2—C9—C8 | −1.85 (13) |
C4—N1—C5—N2 | −179.62 (8) | C7—C8—C9—N3 | −179.98 (9) |
C1—N1—C5—N2 | 22.02 (13) | C7—C8—C9—N2 | −0.49 (14) |
C4—N1—C5—C6 | 0.56 (14) | C9—N3—C10—C11 | −170.91 (9) |
C1—N1—C5—C6 | −157.79 (9) | C13—N3—C10—C11 | 8.57 (11) |
C9—N2—C5—N1 | −176.46 (8) | N3—C10—C11—C12 | −28.80 (10) |
C9—N2—C5—C6 | 3.37 (13) | C10—C11—C12—C13 | 38.50 (11) |
N1—C5—C6—C7 | 177.33 (9) | C9—N3—C13—C12 | −165.45 (9) |
N2—C5—C6—C7 | −2.48 (14) | C10—N3—C13—C12 | 15.10 (11) |
C5—C6—C7—C8 | 0.23 (15) | C11—C12—C13—N3 | −32.44 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···Cl1 | 0.84 | 2.45 | 3.2246 (10) | 153 |
O1W—H1W1···Cl1 | 0.91 | 2.35 | 3.2502 (11) | 169 |
O1W—H2W1···Cl1i | 0.82 | 2.45 | 3.2594 (11) | 171 |
C1—H1B···Cl1 | 0.97 | 2.76 | 3.5100 (11) | 135 |
C7—H7A···O1Wii | 0.93 | 2.35 | 3.2122 (15) | 154 |
C13—H13A···Cl1 | 0.97 | 2.78 | 3.5555 (13) | 138 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H20N3+·Cl−·H2O |
Mr | 271.79 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 11.5728 (15), 12.2724 (16), 11.3622 (16) |
β (°) | 119.214 (2) |
V (Å3) | 1408.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.36 × 0.25 × 0.21 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.911, 0.947 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20960, 5073, 4506 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.756 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.129, 1.26 |
No. of reflections | 5073 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.85, −0.47 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···Cl1 | 0.8400 | 2.4500 | 3.2246 (10) | 153.00 |
O1W—H1W1···Cl1 | 0.9100 | 2.3500 | 3.2502 (11) | 169.00 |
O1W—H2W1···Cl1i | 0.8200 | 2.4500 | 3.2594 (11) | 171.00 |
C1—H1B···Cl1 | 0.9700 | 2.7600 | 3.5100 (11) | 135.00 |
C7—H7A···O1Wii | 0.9300 | 2.3500 | 3.2122 (15) | 154.00 |
C13—H13A···Cl1 | 0.9700 | 2.7800 | 3.5555 (13) | 138.00 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
NM gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF and JHG thank USM for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.
References
Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2939–o2940. Web of Science CSD CrossRef IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cornell, S. E., Jickells, T. D., Cape, J. N., Rowland, A. P. & Duce, R. A. (2003). Atmos. Environ. 37, 2173–2191. Web of Science CrossRef CAS Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Fetzner, S. (1998). Appl. Microbiol. Biotechnol. 49, 237–250. Web of Science CrossRef CAS Google Scholar
Padoley, K. V., Mudliar, S. N. & Pandey, R. A. (2008). Bioresour. Technol. 99, 4029–4043. Web of Science CrossRef PubMed CAS Google Scholar
Rubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757–o758. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xue, W. & Warshawsky, D. (2005). Toxicol. Appl. Pharmacol. 206, 73–93. Web of Science CrossRef PubMed CAS Google Scholar
Zhu, D., Herbert, B. E. & Schlautman, M. A. (2003). Soil Sci. Soc. Am. J. 67, 1370–1377. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitrogen heterocyclic compounds have received a lot of attention especially by the environment scientists. The main sources of these compounds in the environment are the coal gasification, shale oil extraction and pesticide production (Zhu et al., 2003; Fetzner, 1998). The metabolic activation of the heterocyclic compounds and the DNA damage produced (Xue & Warshawsky, 2005) as well as their roles as a pollutants (Padoley et al., 2008) and their deposition on land and coastal environments (Cornell et al., 2003) have been reported. The title compound can be used for the synthesis of new organometallic complexes and in the field of biological activity and drug design.
The asymmetric unit of the title salt comprises of a protonated 2,6-di(pyrrolidin-1-yl)pyridinium cation, a chloride anion and a water molecule (Fig. 1). In the organic cation, the two pyrrolidine rings adopts twisted conformations (Cremer & Pople, 1975). The puckering parameters are Q = 0.3969 (12) Å, ϕ = 94.02 (16)° for C1-C4/N1; and Q = 0.3732 (13) Å, ϕ = 274.73 (17)° for C10-C13/N3. The essentially planar pyridine ring (C5-C9/N2) makes dihedral angles of 23.96 (6) and 14.57 (6)°, respectively, with the mean planes formed through the C1-C4/N1 and C10-C13/N3 pyrrolidine rings. Comparing to the unprotonated structure (Rubin-Preminger & Englert, 2007), protonation at atom N2 has lead to a slight increase in the C5—N2—C9 angle to 122.97 (8)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to a related pyridine structure (Al-Dajani et al., 2009).
In the crystal structure (Fig. 2), the chloride anions provide the most extensive part as hydrogen bond acceptors. Pairs of intermolecular O1W—H1W1···Cl1 and O1W—H2W1···Cl1 bifurcated hydrogen bonds (Table 1) link the chloride anions and water molecules into R44(8) ring motifs (Bernstein et al., 1995) in a DAAD manner. These ring motifs are further interconnected with the organic cations into two-dimensional arrays parallel to the bc plane via intermolecular N2—H1N2···Cl1, C1—H1B···Cl1, C7—H7A···O1W and C13—H13A···Cl1 hydrogen bonds (Table 1).