organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Pyrid­yl)methanaminium 4-nitro­phenolate 4-nitro­phenol solvate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhangshelley86@hotmail.com

(Received 23 May 2010; accepted 8 June 2010; online 16 June 2010)

In the crystal structure of the title compound, C6H9N2+·C6H4NO3·C6H5NO3, ions and mol­ecules are connected via inter­molecular N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For background to the development of ferroelectric pure organic or inorganic compounds, see: Haertling et al. (1999[Haertling, G. H. (1999). J. Am. Ceram. Soc. 82, 797-810.]); Homes et al. (2001[Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673-676.]). For our recent reports on the synthesis of a variety of compounds which have potential piezoelectric and ferroelectric properties, see: Fu et al. (2009[Fu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Hang et al. (2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026-2029.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C6H4NO3·C6H5NO3

  • Mr = 386.36

  • Triclinic, [P \overline 1]

  • a = 6.3666 (13) Å

  • b = 7.4451 (15) Å

  • c = 21.262 (4) Å

  • α = 92.41 (3)°

  • β = 95.56 (3)°

  • γ = 113.99 (3)°

  • V = 912.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.825, Tmax = 1.000

  • 9547 measured reflections

  • 4182 independent reflections

  • 2896 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.140

  • S = 1.05

  • 4182 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 2.09 2.952 (2) 162
N1—H1B⋯O3ii 0.89 1.87 2.753 (2) 169
N1—H1C⋯N2iii 0.89 2.16 2.866 (2) 136
O4—H4A⋯O3 0.96 1.58 2.5385 (19) 173
C1—H1D⋯O5iv 0.93 2.52 3.229 (3) 133
C2—H2A⋯O6v 0.93 2.58 3.327 (3) 138
C8—H10A⋯O4iii 0.93 2.54 3.462 (3) 169
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y+1, z; (iii) x-1, y, z; (iv) -x+2, -y+1, -z+1; (v) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

At present, much attention in ferroelectric material field is focused on developing ferroelectric pure organic or inorganic compounds (Haertling et al. 1999; Homes et al. 2001). Recently we have reported the synthesis of a variety of compounds (Fu et al., 2009; Hang et al., 2009), which have potential piezoelectric and ferroelectric properties. In order to find more dielectric ferroelectric materials, we investigate the physical properties of the title compound(Fig. 1). The dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 2.8 to 4.6), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (399 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 2.8 to 4.6).Herein, we report the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. There are one 4-nitrophenolate anion, an substituted ammonium cation and a neutral 4-nitrophenol molecule in the asymmetric unit. Molecules of the title compound have normal geometric parameters. The bond lengths and angles are within their normal ranges. All pyridine rings are, of course, planar. As can be seen from the packing diagram (Fig. 2), molecules are connected via intermolecular C—H···O and O—H···N hydrogen bonds to form a three dimensional network. Dipole–dipole and van der Waals interactions are effective in the molecular packing.

Related literature top

For background to the development of ferroelectric pure organic or inorganic compounds, see: Haertling et al. (1999); Homes et al. (2001). For our recent reports on the synthesis of a variety of compounds which have potential piezoelectric and ferroelectric properties, see: Fu et al. (2009); Hang et al. (2009).

Experimental top

4-nitrophenol (2.085 g, 0.015 mol) was added slowly to a solution of pyridin-3-ylmethanamine (1.62 g, 0.015 mol) in methanol.After several days, the title compound was formed and recrystallized from solution to afford colourless prismatic crystals suitable for X-ray analysis.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H(aromatic) = 0.93 and 0.97 (methylene) Å, N—H = 0.89 Å and O—H = 0.97 Å and with Uiso(H) = 1.3–1.5Ueq(C, N, O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis showing the hydrogen bondings network. Some of the H atoms have been ommitted for clarity.
(3-Pyridyl)methanaminium 4-nitrophenolate 4-nitrophenol solvate top
Crystal data top
C6H9N2+·C6H4NO3·C6H5nO3Z = 2
Mr = 386.36F(000) = 404
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3666 (13) ÅCell parameters from 4182 reflections
b = 7.4451 (15) Åθ = 2.6–27.5°
c = 21.262 (4) ŵ = 0.11 mm1
α = 92.41 (3)°T = 293 K
β = 95.56 (3)°Prism, colorless
γ = 113.99 (3)°0.20 × 0.20 × 0.20 mm
V = 912.8 (3) Å3
Data collection top
Rigaku Mercury2
diffractometer
4182 independent reflections
Radiation source: fine-focus sealed tube2896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.825, Tmax = 1.000l = 2727
9547 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2125P]
where P = (Fo2 + 2Fc2)/3
4182 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C6H9N2+·C6H4NO3·C6H5nO3γ = 113.99 (3)°
Mr = 386.36V = 912.8 (3) Å3
Triclinic, P1Z = 2
a = 6.3666 (13) ÅMo Kα radiation
b = 7.4451 (15) ŵ = 0.11 mm1
c = 21.262 (4) ÅT = 293 K
α = 92.41 (3)°0.20 × 0.20 × 0.20 mm
β = 95.56 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4182 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2896 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 1.000Rint = 0.034
9547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
4182 reflectionsΔρmin = 0.25 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.3538 (2)0.0490 (2)0.19323 (6)0.0471 (3)
O40.7520 (2)0.0641 (2)0.23068 (6)0.0490 (4)
H4A0.60120.06340.21940.074*
C100.2665 (3)0.2431 (3)0.01944 (8)0.0389 (4)
N30.2243 (3)0.2980 (2)0.04283 (8)0.0481 (4)
C70.3307 (3)0.1152 (3)0.13814 (8)0.0369 (4)
O20.3528 (3)0.2970 (2)0.08282 (7)0.0609 (4)
O10.0584 (3)0.3409 (3)0.05577 (7)0.0687 (5)
C90.1125 (3)0.2297 (3)0.06264 (9)0.0442 (5)
H9A0.01140.26330.05220.053*
C80.1442 (3)0.1664 (3)0.12100 (9)0.0438 (4)
H10A0.04030.15720.14990.053*
C130.8177 (3)0.1128 (3)0.29326 (8)0.0388 (4)
C120.4868 (3)0.1361 (3)0.09345 (9)0.0445 (5)
H12A0.61440.10740.10400.053*
C110.4552 (3)0.1978 (3)0.03479 (9)0.0445 (5)
H11A0.55890.20910.00570.053*
C180.6884 (3)0.1667 (3)0.33310 (9)0.0488 (5)
H18A0.55130.17310.31650.059*
C160.9669 (4)0.2016 (3)0.42097 (9)0.0523 (5)
C141.0262 (3)0.1105 (3)0.31834 (9)0.0476 (5)
H14A1.11670.07980.29170.057*
C151.0994 (4)0.1534 (3)0.38222 (10)0.0530 (5)
H15A1.23790.14970.39910.064*
C170.7627 (4)0.2106 (3)0.39719 (10)0.0570 (6)
H17A0.67610.24590.42400.068*
O51.2363 (4)0.2523 (5)0.50752 (9)0.1289 (10)
O60.9263 (4)0.2807 (4)0.52407 (9)0.1112 (8)
N41.0492 (5)0.2488 (4)0.48875 (10)0.0792 (7)
N10.0537 (3)0.7260 (2)0.20070 (7)0.0414 (4)
H1A0.16860.70060.16960.062*
H1B0.06900.83250.19350.062*
H1C0.09890.74760.23750.062*
N20.5902 (3)0.6209 (3)0.28249 (8)0.0502 (4)
C10.5678 (4)0.6498 (3)0.34345 (9)0.0485 (5)
H1D0.69190.66930.37390.058*
C40.2013 (3)0.5896 (3)0.25514 (9)0.0398 (4)
C50.4074 (3)0.5913 (3)0.24015 (9)0.0466 (5)
H5A0.42050.57030.19750.056*
C30.1849 (3)0.6229 (3)0.31859 (9)0.0469 (5)
H3A0.04990.62540.33090.056*
C60.0087 (4)0.5549 (3)0.20322 (10)0.0491 (5)
H6A0.05590.53050.16280.059*
H6C0.12620.43840.21010.059*
C20.3695 (3)0.6522 (3)0.36331 (9)0.0490 (5)
H2A0.36050.67330.40620.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0441 (8)0.0624 (9)0.0358 (7)0.0228 (7)0.0022 (6)0.0128 (6)
O40.0430 (8)0.0695 (9)0.0332 (7)0.0231 (7)0.0002 (6)0.0017 (6)
C100.0433 (10)0.0396 (10)0.0295 (9)0.0146 (8)0.0031 (7)0.0008 (7)
N30.0561 (11)0.0485 (10)0.0345 (9)0.0185 (8)0.0034 (8)0.0026 (7)
C70.0358 (9)0.0402 (10)0.0305 (9)0.0128 (8)0.0018 (7)0.0015 (7)
O20.0672 (10)0.0792 (11)0.0352 (8)0.0280 (8)0.0083 (7)0.0124 (7)
O10.0807 (12)0.0936 (12)0.0480 (9)0.0546 (10)0.0054 (8)0.0147 (8)
C90.0437 (11)0.0536 (11)0.0404 (10)0.0265 (9)0.0004 (8)0.0038 (9)
C80.0433 (11)0.0561 (12)0.0370 (10)0.0249 (9)0.0074 (8)0.0044 (9)
C130.0389 (10)0.0422 (10)0.0324 (9)0.0143 (8)0.0020 (7)0.0050 (8)
C120.0398 (10)0.0605 (12)0.0386 (10)0.0267 (9)0.0014 (8)0.0068 (9)
C110.0412 (10)0.0563 (12)0.0360 (10)0.0198 (9)0.0059 (8)0.0037 (8)
C180.0410 (11)0.0651 (13)0.0432 (11)0.0253 (10)0.0035 (8)0.0031 (9)
C160.0573 (13)0.0654 (13)0.0322 (10)0.0250 (11)0.0012 (9)0.0009 (9)
C140.0441 (11)0.0602 (12)0.0420 (11)0.0264 (10)0.0024 (8)0.0029 (9)
C150.0458 (12)0.0689 (14)0.0451 (12)0.0283 (11)0.0090 (9)0.0022 (10)
C170.0527 (13)0.0778 (15)0.0436 (12)0.0291 (12)0.0128 (9)0.0005 (11)
O50.1125 (19)0.228 (3)0.0508 (12)0.088 (2)0.0332 (12)0.0189 (14)
O60.1272 (19)0.172 (2)0.0420 (10)0.0706 (18)0.0152 (11)0.0083 (12)
N40.0898 (17)0.1082 (18)0.0373 (11)0.0416 (14)0.0021 (11)0.0018 (11)
N10.0396 (9)0.0564 (10)0.0309 (8)0.0226 (8)0.0024 (6)0.0071 (7)
N20.0444 (10)0.0676 (11)0.0412 (9)0.0260 (9)0.0038 (7)0.0050 (8)
C10.0471 (11)0.0589 (12)0.0383 (11)0.0217 (10)0.0015 (8)0.0085 (9)
C40.0421 (10)0.0377 (10)0.0379 (10)0.0159 (8)0.0004 (8)0.0047 (8)
C50.0499 (12)0.0566 (12)0.0343 (10)0.0232 (10)0.0043 (8)0.0016 (9)
C30.0431 (11)0.0576 (12)0.0430 (11)0.0232 (10)0.0075 (8)0.0076 (9)
C60.0529 (12)0.0454 (11)0.0462 (12)0.0212 (10)0.0091 (9)0.0012 (9)
C20.0507 (12)0.0643 (13)0.0329 (10)0.0235 (10)0.0088 (8)0.0081 (9)
Geometric parameters (Å, º) top
O3—C71.308 (2)C14—C151.373 (3)
O4—C131.344 (2)C14—H14A0.9300
O4—H4A0.9646C15—H15A0.9300
C10—C91.385 (3)C17—H17A0.9300
C10—C111.387 (3)O5—N41.209 (3)
C10—N31.435 (2)O6—N41.218 (3)
N3—O11.232 (2)N1—C61.482 (2)
N3—O21.238 (2)N1—H1A0.8900
C7—C81.409 (3)N1—H1B0.8900
C7—C121.409 (3)N1—H1C0.8900
C9—C81.371 (3)N2—C11.336 (3)
C9—H9A0.9300N2—C51.336 (3)
C8—H10A0.9300C1—C21.376 (3)
C13—C141.389 (3)C1—H1D0.9300
C13—C181.389 (3)C4—C51.375 (3)
C12—C111.372 (3)C4—C31.383 (3)
C12—H12A0.9300C4—C61.498 (3)
C11—H11A0.9300C5—H5A0.9300
C18—C171.378 (3)C3—C21.375 (3)
C18—H18A0.9300C3—H3A0.9300
C16—C151.370 (3)C6—H6A0.9700
C16—C171.377 (3)C6—H6C0.9700
C16—N41.462 (3)C2—H2A0.9300
C13—O4—H4A110.0C14—C15—H15A120.3
C9—C10—C11121.06 (17)C16—C17—C18119.14 (19)
C9—C10—N3119.04 (17)C16—C17—H17A120.4
C11—C10—N3119.86 (18)C18—C17—H17A120.4
O1—N3—O2121.47 (17)O5—N4—O6122.7 (2)
O1—N3—C10119.44 (17)O5—N4—C16118.4 (2)
O2—N3—C10119.07 (17)O6—N4—C16119.0 (2)
O3—C7—C8120.54 (17)C6—N1—H1A109.5
O3—C7—C12122.14 (16)C6—N1—H1B109.5
C8—C7—C12117.31 (16)H1A—N1—H1B109.5
C8—C9—C10119.43 (17)C6—N1—H1C109.5
C8—C9—H9A120.3H1A—N1—H1C109.5
C10—C9—H9A120.3H1B—N1—H1C109.5
C9—C8—C7121.42 (18)C1—N2—C5116.81 (18)
C9—C8—H10A119.3N2—C1—C2123.07 (19)
C7—C8—H10A119.3N2—C1—H1D118.5
O4—C13—C14117.63 (17)C2—C1—H1D118.5
O4—C13—C18123.06 (17)C5—C4—C3117.13 (18)
C14—C13—C18119.31 (17)C5—C4—C6119.56 (18)
C11—C12—C7121.54 (17)C3—C4—C6123.31 (18)
C11—C12—H12A119.2N2—C5—C4124.60 (18)
C7—C12—H12A119.2N2—C5—H5A117.7
C12—C11—C10119.20 (18)C4—C5—H5A117.7
C12—C11—H11A120.4C2—C3—C4119.60 (19)
C10—C11—H11A120.4C2—C3—H3A120.2
C17—C18—C13120.22 (19)C4—C3—H3A120.2
C17—C18—H18A119.9N1—C6—C4111.67 (16)
C13—C18—H18A119.9N1—C6—H6A109.3
C15—C16—C17121.48 (19)C4—C6—H6A109.3
C15—C16—N4118.6 (2)N1—C6—H6C109.3
C17—C16—N4119.9 (2)C4—C6—H6C109.3
C15—C14—C13120.36 (19)H6A—C6—H6C107.9
C15—C14—H14A119.8C3—C2—C1118.79 (19)
C13—C14—H14A119.8C3—C2—H2A120.6
C16—C15—C14119.43 (19)C1—C2—H2A120.6
C16—C15—H15A120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.092.952 (2)162
N1—H1B···O3ii0.891.872.753 (2)169
N1—H1C···N2iii0.892.162.866 (2)136
O4—H4A···O30.961.582.5385 (19)173
C1—H1D···O5iv0.932.523.229 (3)133
C2—H2A···O6v0.932.583.327 (3)138
C8—H10A···O4iii0.932.543.462 (3)169
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C6H4NO3·C6H5nO3
Mr386.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.3666 (13), 7.4451 (15), 21.262 (4)
α, β, γ (°)92.41 (3), 95.56 (3), 113.99 (3)
V3)912.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.825, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9547, 4182, 2896
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.140, 1.05
No. of reflections4182
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.25

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.092.952 (2)161.9
N1—H1B···O3ii0.891.872.753 (2)168.9
N1—H1C···N2iii0.892.162.866 (2)136.3
O4—H4A···O30.961.582.5385 (19)173.3
C1—H1D···O5iv0.932.523.229 (3)133.4
C2—H2A···O6v0.932.583.327 (3)138.0
C8—H10A···O4iii0.932.543.462 (3)168.8
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaertling, G. H. (1999). J. Am. Ceram. Soc. 82, 797–810.  CrossRef CAS Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.  Web of Science CSD CrossRef Google Scholar
First citationHomes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673–676.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds