organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Acetyl­pyridinium iodide

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fuxuequn222@163.com

(Received 24 May 2010; accepted 8 June 2010; online 16 June 2010)

In the title compound, C7H8NO+·I, N—H⋯I hydrogen bonding and ππ stacking inter­actions [centroid–centroid distance = 5.578 (4) Å] stabilize the structure.

Related literature

For background to phase transition materials, see: Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]); Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]). For 4-acetyl­pyridine as a ligand in coordination compounds, see: Steffen & Palenik (1977[Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1128.]); Pang et al. (1994[Pang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr. 24, 203-211.]). For other structures involving 4-acetyl­pyridine, see: Fu (2009a[Fu, X. (2009a). Acta Cryst. E65, o1804.],b[Fu, X. (2009b). Acta Cryst. E65, o2385.]); Majerz et al. (1991[Majerz, I., Malarski, Z. & Sawka-Dobrowolska, W. (1991). J. Mol. Struct. 249, 109-116.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8NO+·I

  • Mr = 249.04

  • Monoclinic, P 21 /c

  • a = 8.5144 (17) Å

  • b = 5.0926 (10) Å

  • c = 21.714 (6) Å

  • β = 111.37 (3)°

  • V = 876.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.59 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.286, Tmax = 0.488

  • 8420 measured reflections

  • 2006 independent reflections

  • 1805 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.124

  • S = 0.90

  • 2006 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I1i 0.86 2.67 3.456 (6) 153
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As a continuation of our study of phase transition materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009), organic-inorganic hybrids, we studied the dielectric properties of the title compound, unfortunately, there was no distinct anomaly observed from 93 K to 350 K, (subliming above 388 K), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range.In this article, the crystal structure of the title compound has been presented.

4-Acetylpyridine may be used as a ligand in coordination compounds e.g. with Zn (Steffen & Palenik, 1977) or Ni (Pang et al., 1994). The crystal structures of 4-acetylpyridine together with pentachlorophenol (Majerz et al. 1991) andinorganic acids are also known e.g. with sulfuric acid (Fu, 2009b) and perchloric acid (Fu, 2009a).

The asymmetric unit of the title compound is built up from an protonated 4-acetylpyridinium cation wherein the acetyl group deviates 28.0 (5)°from the plane formed by the non-hydrogen atoms of the pyridine ring and a I- anion (Fig. 1). The C1—C2—O1 bond angle and O1—C2—C3—C4 torsion angle are 122.6 (8)ånd 27.8 (9)°, respectively. N—H···I hydrogen bonding (N···I distance 3.456 (6) Å) and π-π stacking interaction with the adjacent interplanar spacing of 5.578 (4)Å make great contribution to the stability of the crystal structure.

Related literature top

For background to phase transition materials, see: Li et al. (2008); Zhang et al. (2009). For 4-acetylpyridine as a ligand in coordination compounds, see: Steffen & Palenik (1977); Pang et al. (1994). For other structures involving 4-acetylpyridine, see: Fu (2009a,b); Majerz et al. (1991).

Experimental top

1.19 g(10 mmol) 4-acetylpyridine was firstly dissolved in 50 ml e thanol, to which hydroiodic acid aqueous solution(40%, w/w) was then added until the solution became acidic under stirring.Single crystals of (I) were prepared by slow evaporation at room temperature of the acidic solution after 3 days.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C),Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
4-acetylpyridinium iodide top
Crystal data top
C7H8NO+·IF(000) = 472
Mr = 249.04Dx = 1.887 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4122 reflections
a = 8.5144 (17) Åθ = 3.0–27.6°
b = 5.0926 (10) ŵ = 3.59 mm1
c = 21.714 (6) ÅT = 298 K
β = 111.37 (3)°Prism, colourless
V = 876.8 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2006 independent reflections
Radiation source: fine-focus sealed tube1805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.8°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.286, Tmax = 0.488l = 2827
8420 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0645P)2 + 6.0704P]
where P = (Fo2 + 2Fc2)/3
2006 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C7H8NO+·IV = 876.8 (3) Å3
Mr = 249.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5144 (17) ŵ = 3.59 mm1
b = 5.0926 (10) ÅT = 298 K
c = 21.714 (6) Å0.40 × 0.30 × 0.20 mm
β = 111.37 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2006 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1805 reflections with I > 2σ(I)
Tmin = 0.286, Tmax = 0.488Rint = 0.039
8420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 0.90Δρmax = 0.70 e Å3
2006 reflectionsΔρmin = 0.62 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.78163 (5)0.05660 (9)0.07248 (2)0.05081 (18)
O10.3686 (9)1.1056 (11)0.2117 (3)0.0769 (18)
N10.3294 (8)0.3813 (11)0.0580 (3)0.0531 (13)
H1A0.34050.27170.02970.064*
C20.2855 (10)0.9025 (15)0.2014 (3)0.0546 (16)
C70.1674 (9)0.5509 (14)0.1144 (3)0.0512 (15)
H7A0.06750.55310.12260.061*
C50.4569 (9)0.5415 (15)0.0887 (4)0.0552 (16)
H5A0.55490.53570.07920.066*
C60.1850 (9)0.3817 (13)0.0688 (4)0.0528 (16)
H6A0.09780.26860.04550.063*
C30.2973 (8)0.7194 (12)0.1488 (3)0.0412 (12)
C40.4428 (8)0.7145 (13)0.1342 (3)0.0478 (14)
H4A0.53070.82930.15560.057*
C10.1781 (13)0.832 (3)0.2385 (4)0.093 (3)
H1B0.18320.96830.26970.140*
H1C0.21710.67000.26170.140*
H1D0.06380.81110.20850.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0462 (3)0.0495 (3)0.0573 (3)0.00662 (19)0.01939 (19)0.00989 (18)
O10.122 (5)0.044 (3)0.059 (3)0.005 (3)0.026 (3)0.008 (2)
N10.071 (4)0.041 (3)0.049 (3)0.000 (3)0.024 (3)0.001 (2)
C20.062 (4)0.054 (4)0.042 (3)0.007 (3)0.012 (3)0.005 (3)
C70.044 (3)0.055 (4)0.056 (4)0.002 (3)0.020 (3)0.004 (3)
C50.054 (4)0.057 (4)0.063 (4)0.001 (3)0.031 (3)0.005 (3)
C60.052 (4)0.039 (3)0.061 (4)0.008 (3)0.013 (3)0.002 (3)
C30.049 (3)0.036 (3)0.035 (3)0.003 (2)0.010 (2)0.006 (2)
C40.047 (3)0.045 (3)0.049 (3)0.010 (3)0.014 (3)0.000 (3)
C10.094 (7)0.140 (10)0.057 (5)0.014 (7)0.040 (5)0.003 (6)
Geometric parameters (Å, º) top
O1—C21.227 (9)C5—C41.362 (10)
N1—C51.327 (9)C5—H5A0.9300
N1—C61.332 (10)C6—H6A0.9300
N1—H1A0.8600C3—C41.385 (9)
C2—C11.468 (11)C4—H4A0.9300
C2—C31.506 (9)C1—H1B0.9600
C7—C61.363 (10)C1—H1C0.9600
C7—C31.383 (9)C1—H1D0.9600
C7—H7A0.9300
C5—N1—C6123.3 (6)C7—C6—H6A120.6
C5—N1—H1A118.3C7—C3—C4118.1 (6)
C6—N1—H1A118.3C7—C3—C2122.1 (6)
O1—C2—C1122.6 (8)C4—C3—C2119.8 (6)
O1—C2—C3117.9 (7)C5—C4—C3120.0 (6)
C1—C2—C3119.5 (8)C5—C4—H4A120.0
C6—C7—C3120.4 (6)C3—C4—H4A120.0
C6—C7—H7A119.8C2—C1—H1B109.5
C3—C7—H7A119.8C2—C1—H1C109.5
N1—C5—C4119.3 (6)H1B—C1—H1C109.5
N1—C5—H5A120.3C2—C1—H1D109.5
C4—C5—H5A120.3H1B—C1—H1D109.5
N1—C6—C7118.8 (6)H1C—C1—H1D109.5
N1—C6—H6A120.6
C6—N1—C5—C40.8 (11)C1—C2—C3—C727.6 (10)
C5—N1—C6—C71.3 (11)O1—C2—C3—C427.8 (9)
C3—C7—C6—N10.2 (10)C1—C2—C3—C4151.5 (7)
C6—C7—C3—C41.4 (10)N1—C5—C4—C30.9 (10)
C6—C7—C3—C2177.8 (6)C7—C3—C4—C52.0 (9)
O1—C2—C3—C7153.0 (7)C2—C3—C4—C5177.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I1i0.862.673.456 (6)153
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H8NO+·I
Mr249.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.5144 (17), 5.0926 (10), 21.714 (6)
β (°) 111.37 (3)
V3)876.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.59
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.286, 0.488
No. of measured, independent and
observed [I > 2σ(I)] reflections
8420, 2006, 1805
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.124, 0.90
No. of reflections2006
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.62

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I1i0.862.673.456 (6)152.8
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to purchase the diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFu, X. (2009a). Acta Cryst. E65, o1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFu, X. (2009b). Acta Cryst. E65, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationMajerz, I., Malarski, Z. & Sawka-Dobrowolska, W. (1991). J. Mol. Struct. 249, 109–116.  CSD CrossRef CAS Web of Science Google Scholar
First citationPang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr. 24, 203–211.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119–1128.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds