metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ4-Sulfido-bis­­{(μ-2-furyl­methane­thiol­ato)bis­­[tri­carbonyl­iron](FeFe)}

aCollege of Sciences, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
*Correspondence e-mail: hanc@tust.edu.cn

(Received 10 June 2010; accepted 13 June 2010; online 18 June 2010)

The title compound, [Fe4(C5H5OS)2S(CO)12], was prepared by the direct reaction of Fe3(CO)12 and 2-furyl­methane­thiol in tetra­hydro­furan. Desulfurization took place readily to form an Fe4S3 cluster. The mol­ecule consists of two similar [(μ-2-C4H3O—CH2S)Fe2(CO)6] moieties joined to a spiro-type four-coordinate μ4-S atom such that this bridging sulfur is tetra­hedrally coordinated to the four Fe atoms. In each diiron subcluster core, the 2-furyl­methane­thiol­ate ligand bridges the two Fe atoms.

Related literature

For related cluster complexes with a spiro-type μ4-S atom which is tetrahedrally coordinated to the four iron atoms, see: Coleman et al. (1967[Coleman, J. M., Wojcicki, A., Pollick, P. J. & Dahl, L. F. (1967). Inorg. Chem. 6, 1236-1242.]); Shaver et al., (1979[Shaver, A., Fitzpatrick, P. J., Steliou, K. & Butler, I. S. (1979). J. Am. Chem. Soc. 101, 1313-1315.]). For Fe—Fe bond lengths in related structures, see: Song et al. (1988[Song, L.-C., Kakiata, M., Wang, J.-T., Wang, R.-J. & Wang, H.-G. (1988). J. Organomet. Chem. 340, 239-248.], 1991[Song, L.-C., Hu, Q.-M., Zhang, L.-Y., Wang, H., Zhou, Z.-Y. & Liu, L. (1991). J. Organomet. Chem. 412, C19-C22.], 1992[Song, L.-C., Hu, Q.-M., Jia, G.-F. & Wang, J.-Y. (1992). Sci. China (Ser. B), 35, 1-9.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe4(C5H5OS)2S(CO)12]

  • Mr = 817.91

  • Triclinic, [P \overline 1]

  • a = 9.0335 (18) Å

  • b = 9.984 (2) Å

  • c = 16.821 (3) Å

  • α = 82.89 (3)°

  • β = 75.75 (3)°

  • γ = 89.68 (3)°

  • V = 1458.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.23 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.539, Tmax = 0.697

  • 10642 measured reflections

  • 5099 independent reflections

  • 4055 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.02

  • 5099 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound (Fig. 1), the molecule consists of two identical [(µ-2-C4H3O—CH2S)Fe2(CO)6] moieties joined to a spiro-type four-coordinate µ4-S atom, which is situated at the center of a distorted tetrahedron made up of four iron atoms. So that this bridging sulfur is tetrahedrally coordinated to the four iron atoms. The four S—Fe bond lengths around the central S atom are 2.2404 (11), 2.2411 (9), 2.2451 (10) and 2.2354 (9) Å. The two Fe—Fe bond distances (average, 2.532 Å) are shorter than the average Fe—Fe bond distance (2.540 Å) in [(µ-EtS)Fe2(CO)6]2(µ4-S) (Song et al., 1988), but slightly longer than the average Fe—Fe distance (2.523 Å) both in [(µ-EtS)Fe2(CO)6](µ4-S)[µ-PhS)Fe2(CO)6] (Song et al., 1991) and in [(µ-nBuS)Fe2(CO)6](µ4-S) [(µ-PhS Fe2(CO)6] (Song et al., 1992). However, the bond lengths between the four iron atoms and two sulfur atoms are very close to each other [Fe(1)—S(1) 2.2608 (9), Fe(2)—S(1) 2.2721 (11), Fe(3)—S(3) 2.2623 (9), Fe(4)—S(3) 2.2683 Å]. The bond angles of Fe(1)—S(2)—Fe(2) and Fe(4)—S(2)—Fe(3) are 68.62 (3)° and 69.00 (3)° respectively, which represents a distorted tetrahedron geometry around the central S(2) atom. In addition, it can be seen intuitively from Fig. 1 that each Fe atom has three terminal CO ligands, and the two 2-furfuryl groups attached to the cluster core Fe4S3 are both bonded to µ-S(1) and µ-S(2) by an e-type of bond (Shaver et al., 1979).

Related literature top

For general background [to what?], see: Coleman et al. (1967); Shaver et al., (1979); For Fe—Fe bond lengths in related structures, see: Song et al. (1988, 1991, 1992).

Experimental top

Fe3(CO)12 (1.00 g, 2 mmol) was added to a solution of 2-furylmethanethiol (0.54 g, 2 mmol) in THF (20 ml). After the solution was stirred at room temperature for 12 h, the solvent was removed under reduced pressure and the residue was chromatographed on a silica gel column with CH2Cl2/petroleum ether (1:20 v/v) as the eluent to give the title compound as a red solid (yield 19%, 0.31 g). Single crystals of the title compound were obtained by slow diffusion of petroleum ether into a solution of the complex in CH2Cl2 at room temperature.

Refinement top

The H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H bond lengths and isotropic U parameters: 0.95 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene C—H

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I).
µ4-Sulfido-bis{(µ-2- furylmethanethiolato)bis[tricarbonyliron](FeFe)} top
Crystal data top
[Fe4(C5H5OS)2S(CO)12]Z = 2
Mr = 817.91F(000) = 812
Triclinic, P1Dx = 1.862 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0335 (18) ÅCell parameters from 4907 reflections
b = 9.984 (2) Åθ = 2.1–27.9°
c = 16.821 (3) ŵ = 2.23 mm1
α = 82.89 (3)°T = 113 K
β = 75.75 (3)°Block, red
γ = 89.68 (3)°0.24 × 0.20 × 0.16 mm
V = 1458.6 (5) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5099 independent reflections
Radiation source: fine-focus sealed tube4055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.539, Tmax = 0.697k = 1111
10642 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
5099 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Fe4(C5H5OS)2S(CO)12]γ = 89.68 (3)°
Mr = 817.91V = 1458.6 (5) Å3
Triclinic, P1Z = 2
a = 9.0335 (18) ÅMo Kα radiation
b = 9.984 (2) ŵ = 2.23 mm1
c = 16.821 (3) ÅT = 113 K
α = 82.89 (3)°0.24 × 0.20 × 0.16 mm
β = 75.75 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5099 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4055 reflections with I > 2σ(I)
Tmin = 0.539, Tmax = 0.697Rint = 0.030
10642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.02Δρmax = 0.45 e Å3
5099 reflectionsΔρmin = 0.62 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.19683 (4)0.85862 (4)0.10808 (2)0.01296 (11)
Fe20.01371 (4)0.67940 (4)0.14885 (2)0.01566 (11)
Fe30.28968 (4)0.61770 (4)0.29734 (2)0.01501 (11)
Fe40.08366 (5)0.77162 (4)0.36367 (2)0.01835 (12)
S10.22855 (8)0.64471 (7)0.07704 (4)0.01665 (16)
S20.13073 (7)0.73270 (7)0.23184 (4)0.01353 (15)
S30.33321 (8)0.83480 (7)0.31273 (4)0.01675 (16)
O10.0447 (3)1.0895 (2)0.18284 (14)0.0338 (6)
O20.5239 (2)0.9209 (2)0.08740 (14)0.0345 (6)
O30.1571 (2)0.9649 (2)0.05598 (12)0.0250 (5)
O40.1291 (3)0.7242 (2)0.00010 (14)0.0371 (6)
O50.1418 (3)0.4047 (3)0.21532 (16)0.0494 (7)
O60.2606 (3)0.8400 (3)0.23400 (15)0.0416 (6)
O70.1210 (2)0.3632 (2)0.30600 (14)0.0349 (6)
O80.4142 (3)0.5177 (2)0.43804 (15)0.0447 (7)
O90.5642 (2)0.5837 (2)0.16440 (13)0.0301 (5)
O100.0364 (3)1.0434 (3)0.38395 (17)0.0513 (7)
O110.1137 (3)0.6883 (3)0.53228 (14)0.0544 (8)
O120.2036 (3)0.6167 (3)0.39323 (15)0.0509 (7)
O130.5272 (2)0.6459 (2)0.06799 (12)0.0268 (5)
O140.3290 (2)1.0632 (2)0.43411 (14)0.0341 (6)
C10.1063 (3)1.0016 (3)0.15260 (18)0.0191 (6)
C20.3963 (3)0.9011 (3)0.09646 (17)0.0197 (6)
C30.1750 (3)0.9236 (3)0.00758 (18)0.0168 (6)
C40.0849 (3)0.7046 (3)0.05842 (19)0.0232 (7)
C50.0906 (3)0.5097 (3)0.19004 (19)0.0256 (7)
C60.1661 (3)0.7747 (3)0.20174 (18)0.0243 (7)
C70.1872 (3)0.4617 (3)0.30277 (17)0.0221 (7)
C80.3660 (4)0.5558 (3)0.38300 (19)0.0258 (7)
C90.4556 (3)0.5937 (3)0.21485 (18)0.0210 (7)
C100.0084 (4)0.9395 (3)0.3745 (2)0.0294 (7)
C110.1017 (4)0.7239 (4)0.4665 (2)0.0326 (8)
C120.0913 (4)0.6772 (3)0.38333 (18)0.0302 (8)
C130.2498 (3)0.6287 (3)0.03314 (17)0.0247 (7)
H13A0.24490.53180.03990.030*
H13B0.16340.67310.05140.030*
C140.3945 (3)0.6892 (3)0.08635 (17)0.0199 (6)
C150.4244 (3)0.7765 (3)0.15620 (18)0.0246 (7)
H150.35170.82100.18180.030*
C160.5855 (4)0.7893 (3)0.18430 (19)0.0281 (7)
H160.64170.84340.23260.034*
C170.6433 (4)0.7104 (3)0.12963 (19)0.0283 (7)
H170.74920.70030.13290.034*
C180.4375 (3)0.8527 (3)0.39289 (18)0.0231 (7)
H18A0.37940.80610.44690.028*
H18B0.53860.81100.37820.028*
C190.4570 (3)0.9976 (3)0.39882 (17)0.0232 (7)
C200.5770 (4)1.0843 (4)0.3741 (2)0.0353 (8)
H200.67851.06430.34700.042*
C210.5229 (5)1.2123 (4)0.3963 (2)0.0397 (9)
H210.58121.29410.38730.048*
C220.3763 (5)1.1948 (3)0.4318 (2)0.0417 (9)
H220.31131.26400.45300.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0125 (2)0.0137 (2)0.0129 (2)0.00174 (16)0.00465 (15)0.00090 (16)
Fe20.0133 (2)0.0175 (2)0.0165 (2)0.00366 (16)0.00510 (16)0.00030 (17)
Fe30.0178 (2)0.0158 (2)0.0117 (2)0.00372 (17)0.00451 (16)0.00106 (16)
Fe40.0193 (2)0.0215 (2)0.0120 (2)0.00411 (18)0.00028 (17)0.00232 (18)
S10.0182 (3)0.0168 (4)0.0150 (4)0.0004 (3)0.0036 (3)0.0031 (3)
S20.0123 (3)0.0157 (3)0.0121 (3)0.0000 (3)0.0028 (3)0.0001 (3)
S30.0206 (4)0.0186 (4)0.0134 (4)0.0025 (3)0.0081 (3)0.0031 (3)
O10.0421 (14)0.0217 (12)0.0389 (14)0.0091 (11)0.0105 (11)0.0089 (11)
O20.0217 (12)0.0459 (15)0.0353 (14)0.0092 (10)0.0113 (10)0.0055 (11)
O30.0239 (11)0.0332 (12)0.0179 (11)0.0018 (10)0.0098 (9)0.0056 (10)
O40.0402 (14)0.0438 (15)0.0330 (14)0.0125 (12)0.0244 (12)0.0051 (11)
O50.0608 (17)0.0338 (15)0.0575 (17)0.0266 (13)0.0323 (14)0.0168 (13)
O60.0250 (12)0.0576 (17)0.0409 (15)0.0117 (12)0.0028 (11)0.0123 (13)
O70.0308 (12)0.0259 (13)0.0413 (15)0.0053 (11)0.0023 (11)0.0011 (11)
O80.0757 (19)0.0317 (14)0.0387 (15)0.0098 (13)0.0388 (14)0.0010 (12)
O90.0185 (11)0.0395 (14)0.0313 (13)0.0022 (10)0.0008 (10)0.0151 (11)
O100.0561 (17)0.0366 (16)0.0624 (19)0.0236 (14)0.0121 (14)0.0166 (14)
O110.0680 (19)0.074 (2)0.0149 (14)0.0192 (16)0.0027 (12)0.0020 (13)
O120.0365 (15)0.0602 (18)0.0447 (16)0.0180 (14)0.0077 (12)0.0013 (14)
O130.0256 (11)0.0307 (12)0.0205 (11)0.0003 (10)0.0013 (9)0.0014 (10)
O140.0369 (13)0.0310 (13)0.0323 (13)0.0081 (11)0.0011 (11)0.0110 (11)
C10.0163 (14)0.0192 (15)0.0211 (16)0.0049 (12)0.0062 (12)0.0036 (13)
C20.0217 (16)0.0216 (15)0.0169 (15)0.0044 (12)0.0086 (12)0.0016 (12)
C30.0101 (13)0.0164 (14)0.0236 (17)0.0022 (11)0.0038 (12)0.0015 (13)
C40.0204 (15)0.0233 (16)0.0257 (18)0.0070 (13)0.0062 (13)0.0014 (14)
C50.0231 (16)0.0294 (18)0.0248 (17)0.0068 (14)0.0099 (13)0.0026 (14)
C60.0146 (15)0.0352 (18)0.0219 (16)0.0068 (14)0.0029 (13)0.0022 (14)
C70.0254 (16)0.0212 (16)0.0172 (15)0.0063 (14)0.0020 (12)0.0012 (13)
C80.0360 (18)0.0209 (16)0.0235 (18)0.0062 (14)0.0121 (15)0.0048 (14)
C90.0229 (16)0.0214 (16)0.0243 (17)0.0044 (13)0.0143 (14)0.0080 (13)
C100.0280 (17)0.032 (2)0.0273 (18)0.0078 (15)0.0049 (14)0.0064 (15)
C110.0361 (19)0.041 (2)0.0181 (18)0.0111 (16)0.0010 (14)0.0061 (16)
C120.0297 (18)0.0357 (19)0.0186 (17)0.0010 (16)0.0050 (14)0.0010 (14)
C130.0314 (17)0.0284 (17)0.0166 (15)0.0054 (14)0.0068 (13)0.0092 (13)
C140.0221 (15)0.0214 (15)0.0164 (15)0.0009 (12)0.0019 (12)0.0087 (13)
C150.0236 (16)0.0315 (17)0.0177 (16)0.0038 (13)0.0044 (13)0.0007 (13)
C160.0374 (19)0.0234 (17)0.0193 (16)0.0023 (15)0.0003 (14)0.0006 (14)
C170.0246 (16)0.0326 (18)0.0264 (18)0.0014 (14)0.0029 (14)0.0054 (15)
C180.0287 (16)0.0260 (17)0.0194 (16)0.0041 (14)0.0136 (13)0.0059 (13)
C190.0266 (16)0.0307 (17)0.0176 (16)0.0064 (14)0.0131 (13)0.0084 (14)
C200.0357 (19)0.039 (2)0.038 (2)0.0031 (16)0.0203 (16)0.0060 (17)
C210.059 (2)0.0292 (19)0.040 (2)0.0040 (18)0.0297 (19)0.0040 (16)
C220.068 (3)0.0255 (19)0.035 (2)0.0100 (18)0.0161 (19)0.0111 (16)
Geometric parameters (Å, º) top
Fe1—C31.791 (3)O6—C61.141 (4)
Fe1—C11.793 (3)O7—C71.142 (3)
Fe1—C21.811 (3)O8—C81.141 (4)
Fe1—S22.2404 (11)O9—C91.141 (3)
Fe1—S12.2608 (9)O10—C101.127 (4)
Fe1—Fe22.5263 (10)O11—C111.151 (4)
Fe2—C41.782 (3)O12—C121.149 (4)
Fe2—C61.785 (3)O13—C141.364 (4)
Fe2—C51.822 (3)O13—C171.377 (4)
Fe2—S22.2411 (9)O14—C191.367 (4)
Fe2—S12.2721 (11)O14—C221.376 (4)
Fe3—C81.788 (3)C13—C141.474 (4)
Fe3—C71.798 (3)C13—H13A0.9900
Fe3—C91.812 (3)C13—H13B0.9900
Fe3—S22.2451 (10)C14—C151.344 (4)
Fe3—S32.2623 (9)C15—C161.416 (4)
Fe3—Fe42.5377 (10)C15—H150.9500
Fe4—C121.783 (3)C16—C171.338 (5)
Fe4—C111.783 (3)C16—H160.9500
Fe4—C101.818 (3)C17—H170.9500
Fe4—S22.2354 (9)C18—C191.476 (4)
Fe4—S32.2683 (10)C18—H18A0.9900
S1—C131.843 (3)C18—H18B0.9900
S3—C181.850 (3)C19—C201.341 (4)
O1—C11.142 (3)C20—C211.426 (5)
O2—C21.140 (3)C20—H200.9500
O3—C31.147 (3)C21—C221.315 (5)
O4—C41.142 (4)C21—H210.9500
O5—C51.137 (4)C22—H220.9500
C3—Fe1—C192.11 (13)C13—S1—Fe2114.86 (11)
C3—Fe1—C2100.43 (13)Fe1—S1—Fe267.74 (4)
C1—Fe1—C2101.10 (13)Fe4—S2—Fe1135.87 (4)
C3—Fe1—S2155.11 (8)Fe4—S2—Fe2134.78 (4)
C1—Fe1—S290.34 (10)Fe1—S2—Fe268.62 (3)
C2—Fe1—S2103.38 (10)Fe4—S2—Fe369.00 (3)
C3—Fe1—S193.47 (9)Fe1—S2—Fe3126.33 (4)
C1—Fe1—S1159.33 (9)Fe2—S2—Fe3134.36 (4)
C2—Fe1—S197.44 (10)C18—S3—Fe3113.61 (10)
S2—Fe1—S176.45 (4)C18—S3—Fe4114.22 (10)
C3—Fe1—Fe299.71 (9)Fe3—S3—Fe468.13 (4)
C1—Fe1—Fe2103.08 (9)C14—O13—C17105.9 (2)
C2—Fe1—Fe2147.72 (10)C19—O14—C22105.5 (3)
S2—Fe1—Fe255.70 (3)O1—C1—Fe1177.5 (3)
S1—Fe1—Fe256.34 (3)O2—C2—Fe1176.0 (3)
C4—Fe2—C690.20 (14)O3—C3—Fe1178.3 (2)
C4—Fe2—C599.53 (13)O4—C4—Fe2178.2 (3)
C6—Fe2—C599.25 (14)O5—C5—Fe2178.3 (3)
C4—Fe2—S2154.17 (9)O6—C6—Fe2177.4 (3)
C6—Fe2—S290.14 (10)O7—C7—Fe3179.4 (3)
C5—Fe2—S2105.90 (10)O8—C8—Fe3179.2 (3)
C4—Fe2—S193.58 (10)O9—C9—Fe3176.3 (2)
C6—Fe2—S1155.68 (10)O10—C10—Fe4177.3 (3)
C5—Fe2—S1103.78 (11)O11—C11—Fe4177.5 (3)
S2—Fe2—S176.21 (3)O12—C12—Fe4177.7 (3)
C4—Fe2—Fe198.88 (10)C14—C13—S1112.8 (2)
C6—Fe2—Fe199.76 (10)C14—C13—H13A109.0
C5—Fe2—Fe1153.37 (10)S1—C13—H13A109.0
S2—Fe2—Fe155.67 (3)C14—C13—H13B109.0
S1—Fe2—Fe155.92 (3)S1—C13—H13B109.0
C8—Fe3—C792.59 (14)H13A—C13—H13B107.8
C8—Fe3—C998.25 (14)C15—C14—O13110.4 (3)
C7—Fe3—C999.52 (13)C15—C14—C13131.7 (3)
C8—Fe3—S2156.60 (10)O13—C14—C13117.7 (3)
C7—Fe3—S291.54 (10)C14—C15—C16106.7 (3)
C9—Fe3—S2103.76 (10)C14—C15—H15126.7
C8—Fe3—S391.95 (10)C16—C15—H15126.7
C7—Fe3—S3159.40 (10)C17—C16—C15106.8 (3)
C9—Fe3—S399.69 (10)C17—C16—H16126.6
S2—Fe3—S376.72 (4)C15—C16—H16126.6
C8—Fe3—Fe4101.36 (10)C16—C17—O13110.2 (3)
C7—Fe3—Fe4103.36 (10)C16—C17—H17124.9
C9—Fe3—Fe4148.96 (10)O13—C17—H17124.9
S2—Fe3—Fe455.32 (3)C19—C18—S3109.1 (2)
S3—Fe3—Fe456.05 (3)C19—C18—H18A109.9
C12—Fe4—C1192.05 (16)S3—C18—H18A109.9
C12—Fe4—C1099.51 (15)C19—C18—H18B109.9
C11—Fe4—C1099.31 (15)S3—C18—H18B109.9
C12—Fe4—S288.53 (10)H18A—C18—H18B108.3
C11—Fe4—S2149.77 (11)C20—C19—O14110.0 (3)
C10—Fe4—S2110.40 (11)C20—C19—C18133.3 (3)
C12—Fe4—S3160.65 (10)O14—C19—C18116.7 (3)
C11—Fe4—S394.40 (11)C19—C20—C21106.7 (3)
C10—Fe4—S397.42 (11)C19—C20—H20126.6
S2—Fe4—S376.79 (4)C21—C20—H20126.6
C12—Fe4—Fe3105.43 (11)C22—C21—C20106.4 (3)
C11—Fe4—Fe395.30 (11)C22—C21—H21126.8
C10—Fe4—Fe3150.52 (10)C20—C21—H21126.8
S2—Fe4—Fe355.68 (3)C21—C22—O14111.2 (3)
S3—Fe4—Fe355.82 (3)C21—C22—H22124.4
C13—S1—Fe1114.19 (11)O14—C22—H22124.4
C3—Fe1—Fe2—C40.62 (13)C2—Fe1—S2—Fe474.09 (11)
C1—Fe1—Fe2—C493.86 (14)S1—Fe1—S2—Fe4168.65 (5)
C2—Fe1—Fe2—C4128.58 (19)Fe2—Fe1—S2—Fe4133.06 (6)
S2—Fe1—Fe2—C4175.16 (10)C3—Fe1—S2—Fe29.9 (2)
S1—Fe1—Fe2—C488.32 (11)C1—Fe1—S2—Fe2105.66 (9)
C3—Fe1—Fe2—C692.36 (14)C2—Fe1—S2—Fe2152.84 (10)
C1—Fe1—Fe2—C62.12 (14)S1—Fe1—S2—Fe258.28 (3)
C2—Fe1—Fe2—C6139.68 (19)C3—Fe1—S2—Fe3140.0 (2)
S2—Fe1—Fe2—C683.42 (11)C1—Fe1—S2—Fe3124.24 (10)
S1—Fe1—Fe2—C6179.94 (11)C2—Fe1—S2—Fe322.75 (10)
C3—Fe1—Fe2—C5132.7 (2)S1—Fe1—S2—Fe371.81 (5)
C1—Fe1—Fe2—C5132.9 (2)Fe2—Fe1—S2—Fe3130.10 (5)
C2—Fe1—Fe2—C54.7 (3)C4—Fe2—S2—Fe4123.2 (2)
S2—Fe1—Fe2—C551.6 (2)C6—Fe2—S2—Fe432.48 (11)
S1—Fe1—Fe2—C545.0 (2)C5—Fe2—S2—Fe467.18 (12)
C3—Fe1—Fe2—S2175.79 (9)S1—Fe2—S2—Fe4167.85 (5)
C1—Fe1—Fe2—S281.31 (10)Fe1—Fe2—S2—Fe4134.23 (6)
C2—Fe1—Fe2—S256.25 (17)C4—Fe2—S2—Fe111.0 (2)
S1—Fe1—Fe2—S296.52 (4)C6—Fe2—S2—Fe1101.75 (11)
C3—Fe1—Fe2—S187.69 (9)C5—Fe2—S2—Fe1158.59 (10)
C1—Fe1—Fe2—S1177.82 (10)S1—Fe2—S2—Fe157.92 (3)
C2—Fe1—Fe2—S140.26 (17)C4—Fe2—S2—Fe3131.5 (2)
S2—Fe1—Fe2—S196.52 (4)C6—Fe2—S2—Fe3137.79 (11)
C8—Fe3—Fe4—C12100.70 (15)C5—Fe2—S2—Fe338.12 (11)
C7—Fe3—Fe4—C125.25 (15)S1—Fe2—S2—Fe362.54 (5)
C9—Fe3—Fe4—C12131.2 (2)Fe1—Fe2—S2—Fe3120.46 (5)
S2—Fe3—Fe4—C1277.24 (12)C8—Fe3—S2—Fe45.1 (3)
S3—Fe3—Fe4—C12174.66 (12)C7—Fe3—S2—Fe4105.21 (9)
C8—Fe3—Fe4—C117.10 (15)C9—Fe3—S2—Fe4154.60 (9)
C7—Fe3—Fe4—C1188.36 (15)S3—Fe3—S2—Fe457.69 (4)
C9—Fe3—Fe4—C11135.2 (2)C8—Fe3—S2—Fe1137.3 (2)
S2—Fe3—Fe4—C11170.85 (12)C7—Fe3—S2—Fe1122.56 (10)
S3—Fe3—Fe4—C1191.73 (12)C9—Fe3—S2—Fe122.37 (10)
C8—Fe3—Fe4—C10112.5 (2)S3—Fe3—S2—Fe174.54 (5)
C7—Fe3—Fe4—C10152.0 (2)Fe4—Fe3—S2—Fe1132.23 (5)
C9—Fe3—Fe4—C1015.6 (3)C8—Fe3—S2—Fe2127.7 (2)
S2—Fe3—Fe4—C1069.5 (2)C7—Fe3—S2—Fe227.61 (10)
S3—Fe3—Fe4—C1027.9 (2)C9—Fe3—S2—Fe272.58 (10)
C8—Fe3—Fe4—S2177.94 (10)S3—Fe3—S2—Fe2169.49 (5)
C7—Fe3—Fe4—S282.49 (10)Fe4—Fe3—S2—Fe2132.83 (5)
C9—Fe3—Fe4—S253.92 (17)C8—Fe3—S3—C185.48 (15)
S3—Fe3—Fe4—S297.42 (4)C7—Fe3—S3—C18108.1 (3)
C8—Fe3—Fe4—S384.64 (11)C9—Fe3—S3—C1893.23 (14)
C7—Fe3—Fe4—S3179.91 (10)S2—Fe3—S3—C18164.79 (11)
C9—Fe3—Fe4—S343.50 (17)Fe4—Fe3—S3—C18107.87 (11)
S2—Fe3—Fe4—S397.42 (4)C8—Fe3—S3—Fe4102.39 (10)
C3—Fe1—S1—C138.94 (13)C7—Fe3—S3—Fe40.2 (3)
C1—Fe1—S1—C13114.3 (3)C9—Fe3—S3—Fe4158.90 (10)
C2—Fe1—S1—C1392.07 (14)S2—Fe3—S3—Fe456.91 (3)
S2—Fe1—S1—C13165.90 (11)C12—Fe4—S3—C18122.7 (4)
Fe2—Fe1—S1—C13108.30 (11)C11—Fe4—S3—C1813.60 (15)
C3—Fe1—S1—Fe299.36 (9)C10—Fe4—S3—C1886.40 (15)
C1—Fe1—S1—Fe26.0 (3)S2—Fe4—S3—C18164.30 (11)
C2—Fe1—S1—Fe2159.63 (9)Fe3—Fe4—S3—C18107.02 (11)
S2—Fe1—S1—Fe257.59 (4)C12—Fe4—S3—Fe315.7 (3)
C4—Fe2—S1—C139.06 (14)C11—Fe4—S3—Fe393.42 (11)
C6—Fe2—S1—C13107.5 (3)C10—Fe4—S3—Fe3166.57 (11)
C5—Fe2—S1—C1391.67 (15)S2—Fe4—S3—Fe357.27 (3)
S2—Fe2—S1—C13165.02 (11)Fe1—S1—C13—C1468.5 (3)
Fe1—Fe2—S1—C13107.36 (12)Fe2—S1—C13—C14144.1 (2)
C4—Fe2—S1—Fe198.30 (10)C17—O13—C14—C150.2 (3)
C6—Fe2—S1—Fe10.1 (3)C17—O13—C14—C13175.9 (2)
C5—Fe2—S1—Fe1160.97 (10)S1—C13—C14—C15130.0 (3)
S2—Fe2—S1—Fe157.66 (3)S1—C13—C14—O1355.3 (3)
C12—Fe4—S2—Fe1129.09 (13)O13—C14—C15—C160.3 (3)
C11—Fe4—S2—Fe1139.4 (2)C13—C14—C15—C16174.7 (3)
C10—Fe4—S2—Fe129.50 (12)C14—C15—C16—C170.6 (3)
S3—Fe4—S2—Fe163.61 (6)C15—C16—C17—O130.7 (3)
Fe3—Fe4—S2—Fe1121.04 (6)C14—O13—C17—C160.6 (3)
C12—Fe4—S2—Fe222.51 (13)Fe3—S3—C18—C19178.94 (18)
C11—Fe4—S2—Fe2114.0 (2)Fe4—S3—C18—C19103.4 (2)
C10—Fe4—S2—Fe277.09 (12)C22—O14—C19—C201.3 (4)
S3—Fe4—S2—Fe2170.20 (5)C22—O14—C19—C18179.5 (3)
Fe3—Fe4—S2—Fe2132.38 (6)S3—C18—C19—C20105.8 (4)
C12—Fe4—S2—Fe3109.87 (12)S3—C18—C19—O1471.9 (3)
C11—Fe4—S2—Fe318.3 (2)O14—C19—C20—C211.1 (4)
C10—Fe4—S2—Fe3150.53 (11)C18—C19—C20—C21178.9 (3)
S3—Fe4—S2—Fe357.42 (3)C19—C20—C21—C220.5 (4)
C3—Fe1—S2—Fe4123.2 (2)C20—C21—C22—O140.4 (4)
C1—Fe1—S2—Fe427.40 (10)C19—O14—C22—C211.0 (4)

Experimental details

Crystal data
Chemical formula[Fe4(C5H5OS)2S(CO)12]
Mr817.91
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.0335 (18), 9.984 (2), 16.821 (3)
α, β, γ (°)82.89 (3), 75.75 (3), 89.68 (3)
V3)1458.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.23
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.539, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
10642, 5099, 4055
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.02
No. of reflections5099
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.62

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Tianjn University of Science and Technology Research Fund (No. 20070209).

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColeman, J. M., Wojcicki, A., Pollick, P. J. & Dahl, L. F. (1967). Inorg. Chem. 6, 1236–1242.  CSD CrossRef CAS Web of Science Google Scholar
First citationShaver, A., Fitzpatrick, P. J., Steliou, K. & Butler, I. S. (1979). J. Am. Chem. Soc. 101, 1313–1315.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L.-C., Hu, Q.-M., Jia, G.-F. & Wang, J.-Y. (1992). Sci. China (Ser. B), 35, 1–9.  CAS Google Scholar
First citationSong, L.-C., Hu, Q.-M., Zhang, L.-Y., Wang, H., Zhou, Z.-Y. & Liu, L. (1991). J. Organomet. Chem. 412, C19–C22.  CSD CrossRef CAS Web of Science Google Scholar
First citationSong, L.-C., Kakiata, M., Wang, J.-T., Wang, R.-J. & Wang, H.-G. (1988). J. Organomet. Chem. 340, 239–248.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds