organic compounds
Dimethyl 2,2′-[ethane-1,2-diylbis(sulfanediyl)]dibenzoate
aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467002, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: xiaominghu10@163.com
The title compound, C18H18O4S2, was synthesized by the reaction of 1,2-dibromoethane with methyl thiosalicylate. The complete molecule is generated by crystallographic twofold symmetry: two methyl benzoate units are linked by an –S–(CH2)2–S– bridging chain with a gauche S—CH2—CH2—S torsion angle [72.88 (16)°]. The two aromatic rings form a dihedral angle of 79.99 (6)°. In the crystal, adjacent molecules are linked into a three-dimensional network by non-classical C—H⋯O hydrogen bonds.
Related literature
For the potential use of dithiodibenzoates in the construction of diverse frameworks with tailored properties and functions, see: Humphrey et al. (2004); Li et al. (2007); Murugavel et al. (2001); Wang et al. (2004); Zhou et al. (2009).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810022403/jh2166sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810022403/jh2166Isup2.hkl
The title compound was synthesized as follows: a solution of 1,2-dibromoethane (0.94 g, 5 mmol) in methanol (10 ml) was added dropwise to a mixture of methyl thiosalicylate (1.85 g, 11 mmol), KOH (0.617 g, 11 mmol) and ethanol (10 ml). The reaction mixture was stirred and heated for 12 h. The precipitate was filtered off, washed with water.Yield 72%; Colourless block crystals suitable for single-crystals X-ray analysis were obtained by recrystallization from an acetonitrile solution.
Hydrogen atoms were placed in calculated positions [C—H = 0.93–0.97 Å] and refined as riding [Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl)].
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: publCIF (Westrip, 2010).C18H18O4S2 | F(000) = 380 |
Mr = 362.44 | Dx = 1.378 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2y | Cell parameters from 2178 reflections |
a = 15.077 (3) Å | θ = 2.7–27.4° |
b = 5.3913 (10) Å | µ = 0.32 mm−1 |
c = 12.495 (2) Å | T = 296 K |
β = 120.662 (2)° | Block, colourless |
V = 873.6 (3) Å3 | 0.52 × 0.32 × 0.22 mm |
Z = 2 |
Bruker SMART APEXII diffractometer | 1948 independent reflections |
Radiation source: fine-focus sealed tube | 1864 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω scans | θmax = 27.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −19→18 |
Tmin = 0.850, Tmax = 0.932 | k = −6→6 |
3836 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0441P)2 + 0.1272P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1948 reflections | Δρmax = 0.23 e Å−3 |
110 parameters | Δρmin = −0.15 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 834 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (7) |
C18H18O4S2 | V = 873.6 (3) Å3 |
Mr = 362.44 | Z = 2 |
Monoclinic, C2 | Mo Kα radiation |
a = 15.077 (3) Å | µ = 0.32 mm−1 |
b = 5.3913 (10) Å | T = 296 K |
c = 12.495 (2) Å | 0.52 × 0.32 × 0.22 mm |
β = 120.662 (2)° |
Bruker SMART APEXII diffractometer | 1948 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 1864 reflections with I > 2σ(I) |
Tmin = 0.850, Tmax = 0.932 | Rint = 0.023 |
3836 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.082 | Δρmax = 0.23 e Å−3 |
S = 1.08 | Δρmin = −0.15 e Å−3 |
1948 reflections | Absolute structure: Flack (1983), 834 Friedel pairs |
110 parameters | Absolute structure parameter: −0.02 (7) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.24609 (11) | 0.0317 (4) | 0.17607 (14) | 0.0440 (3) | |
C2 | 0.31876 (12) | 0.1986 (4) | 0.26461 (15) | 0.0455 (4) | |
C3 | 0.42223 (14) | 0.1865 (5) | 0.29514 (18) | 0.0590 (5) | |
H3 | 0.4700 | 0.2970 | 0.3530 | 0.071* | |
C4 | 0.45387 (16) | 0.0121 (6) | 0.2402 (2) | 0.0689 (7) | |
H4 | 0.5224 | 0.0062 | 0.2606 | 0.083* | |
C5 | 0.38363 (18) | −0.1516 (5) | 0.1556 (2) | 0.0694 (7) | |
H5 | 0.4051 | −0.2695 | 0.1192 | 0.083* | |
C6 | 0.28109 (16) | −0.1440 (4) | 0.12343 (19) | 0.0577 (5) | |
H6 | 0.2348 | −0.2574 | 0.0660 | 0.069* | |
C7 | 0.28831 (13) | 0.3846 (4) | 0.32683 (16) | 0.0478 (4) | |
C8 | 0.05804 (14) | −0.2095 (4) | 0.02558 (17) | 0.0525 (4) | |
H8A | 0.0717 | −0.1916 | −0.0420 | 0.063* | |
H8B | 0.0879 | −0.3649 | 0.0679 | 0.063* | |
C9 | 0.3458 (2) | 0.6901 (7) | 0.4813 (3) | 0.0898 (8) | |
H9A | 0.2859 | 0.7821 | 0.4230 | 0.135* | |
H9B | 0.4035 | 0.8008 | 0.5233 | 0.135* | |
H9C | 0.3330 | 0.6119 | 0.5411 | 0.135* | |
O1 | 0.36822 (11) | 0.5052 (4) | 0.41658 (15) | 0.0793 (5) | |
O2 | 0.20111 (11) | 0.4248 (3) | 0.30111 (15) | 0.0675 (4) | |
S1 | 0.11495 (3) | 0.04719 (7) | 0.13359 (4) | 0.04790 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0394 (7) | 0.0510 (9) | 0.0398 (7) | 0.0110 (9) | 0.0188 (6) | 0.0069 (9) |
C2 | 0.0355 (8) | 0.0578 (11) | 0.0388 (8) | 0.0087 (7) | 0.0157 (7) | 0.0098 (7) |
C3 | 0.0380 (9) | 0.0805 (14) | 0.0535 (10) | 0.0051 (9) | 0.0198 (8) | 0.0137 (10) |
C4 | 0.0461 (10) | 0.100 (2) | 0.0675 (12) | 0.0304 (14) | 0.0340 (9) | 0.0303 (14) |
C5 | 0.0659 (14) | 0.0845 (17) | 0.0697 (14) | 0.0365 (12) | 0.0433 (12) | 0.0199 (12) |
C6 | 0.0567 (11) | 0.0623 (12) | 0.0551 (11) | 0.0187 (10) | 0.0292 (9) | 0.0041 (9) |
C7 | 0.0387 (9) | 0.0555 (11) | 0.0409 (8) | −0.0024 (8) | 0.0143 (7) | 0.0010 (8) |
C8 | 0.0529 (10) | 0.0413 (9) | 0.0474 (10) | 0.0051 (8) | 0.0141 (8) | −0.0028 (7) |
C9 | 0.0861 (18) | 0.0898 (19) | 0.0753 (16) | −0.0203 (16) | 0.0279 (14) | −0.0349 (16) |
O1 | 0.0477 (7) | 0.1046 (15) | 0.0671 (8) | −0.0113 (9) | 0.0159 (6) | −0.0323 (10) |
O2 | 0.0418 (7) | 0.0789 (10) | 0.0765 (9) | −0.0027 (7) | 0.0264 (7) | −0.0284 (8) |
S1 | 0.03542 (19) | 0.0520 (2) | 0.0488 (2) | 0.0033 (2) | 0.01601 (15) | −0.0082 (2) |
C1—C6 | 1.401 (3) | C6—H6 | 0.9300 |
C1—C2 | 1.413 (3) | C7—O2 | 1.203 (2) |
C1—S1 | 1.7685 (15) | C7—O1 | 1.324 (2) |
C2—C3 | 1.406 (2) | C8—C8i | 1.527 (4) |
C2—C7 | 1.478 (3) | C8—S1 | 1.8143 (19) |
C3—C4 | 1.384 (4) | C8—H8A | 0.9700 |
C3—H3 | 0.9300 | C8—H8B | 0.9700 |
C4—C5 | 1.370 (4) | C9—O1 | 1.429 (3) |
C4—H4 | 0.9300 | C9—H9A | 0.9600 |
C5—C6 | 1.386 (3) | C9—H9B | 0.9600 |
C5—H5 | 0.9300 | C9—H9C | 0.9600 |
C6—C1—C2 | 118.08 (15) | O2—C7—O1 | 122.42 (19) |
C6—C1—S1 | 121.47 (16) | O2—C7—C2 | 124.88 (16) |
C2—C1—S1 | 120.44 (14) | O1—C7—C2 | 112.71 (16) |
C3—C2—C1 | 119.52 (18) | C8i—C8—S1 | 108.52 (12) |
C3—C2—C7 | 119.22 (18) | C8i—C8—H8A | 110.0 |
C1—C2—C7 | 121.26 (14) | S1—C8—H8A | 110.0 |
C4—C3—C2 | 120.8 (2) | C8i—C8—H8B | 110.0 |
C4—C3—H3 | 119.6 | S1—C8—H8B | 110.0 |
C2—C3—H3 | 119.6 | H8A—C8—H8B | 108.4 |
C5—C4—C3 | 119.61 (18) | O1—C9—H9A | 109.5 |
C5—C4—H4 | 120.2 | O1—C9—H9B | 109.5 |
C3—C4—H4 | 120.2 | H9A—C9—H9B | 109.5 |
C4—C5—C6 | 120.9 (2) | O1—C9—H9C | 109.5 |
C4—C5—H5 | 119.5 | H9A—C9—H9C | 109.5 |
C6—C5—H5 | 119.5 | H9B—C9—H9C | 109.5 |
C5—C6—C1 | 121.0 (2) | C7—O1—C9 | 116.51 (17) |
C5—C6—H6 | 119.5 | C1—S1—C8 | 102.68 (10) |
C1—C6—H6 | 119.5 | ||
C6—C1—C2—C3 | 1.1 (3) | S1—C1—C6—C5 | 178.76 (16) |
S1—C1—C2—C3 | −178.69 (15) | C3—C2—C7—O2 | 173.83 (19) |
C6—C1—C2—C7 | −178.26 (18) | C1—C2—C7—O2 | −6.8 (3) |
S1—C1—C2—C7 | 1.9 (2) | C3—C2—C7—O1 | −6.6 (3) |
C1—C2—C3—C4 | −0.4 (3) | C1—C2—C7—O1 | 172.80 (18) |
C7—C2—C3—C4 | 178.97 (18) | O2—C7—O1—C9 | −0.9 (3) |
C2—C3—C4—C5 | −0.4 (3) | C2—C7—O1—C9 | 179.6 (2) |
C3—C4—C5—C6 | 0.5 (3) | C6—C1—S1—C8 | 2.60 (18) |
C4—C5—C6—C1 | 0.3 (3) | C2—C1—S1—C8 | −177.58 (15) |
C2—C1—C6—C5 | −1.1 (3) | C8i—C8—S1—C1 | −176.60 (15) |
Symmetry code: (i) −x, y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1 | 0.93 | 2.34 | 2.679 (3) | 101 |
C4—H4···O2ii | 0.93 | 2.51 | 3.435 (2) | 171 |
Symmetry code: (ii) x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C18H18O4S2 |
Mr | 362.44 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 296 |
a, b, c (Å) | 15.077 (3), 5.3913 (10), 12.495 (2) |
β (°) | 120.662 (2) |
V (Å3) | 873.6 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.32 |
Crystal size (mm) | 0.52 × 0.32 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.850, 0.932 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3836, 1948, 1864 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.082, 1.08 |
No. of reflections | 1948 |
No. of parameters | 110 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.15 |
Absolute structure | Flack (1983), 834 Friedel pairs |
Absolute structure parameter | −0.02 (7) |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.51 | 3.435 (2) | 171.2 |
Symmetry code: (i) x+1/2, y−1/2, z. |
Acknowledgements
This work was supported by the Top-Class Foundation of Pingdingshan University (grant No. 2006047).
References
Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Humphrey, S. M., Mole, R. A., Rawson, J. M. & Wood, P. T. (2004). Dalton Trans. pp. 1670–1678. Web of Science CSD CrossRef PubMed Google Scholar
Li, X.-H., Jia, S.-C. & Jalbout, A. F. (2007). Z. Kristallogr. New Cryst. Struct. 222, 117–118. CAS Google Scholar
Murugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870–6878. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, S., Mao-Lin, H. & Chen, F. (2004). Acta Cryst. E60, m413–m415. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted. Google Scholar
Zhou, L.-M., Zhang, Q. & Hu, M. (2009). Acta Cryst. E65, m1221–m1222. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The flexibility and conformational freedom of the disulfide derivatives of the benzoate – dithiodibenzoates - provides a possibility for the construction of diverse frameworks with tailored properties and functions (Murugavel et al., 2001; Humphrey et al., 2004; Wang et al. 2004; Li et al., 2007; Zhou et al., 2009). The flexible bridging ligands adopt unusually twisted structures with different C—S—S—C torsion angles in constructing complexes.
The title compound described here is a longer analogue of 2,2'-dithiodibenzoate with the two methyl benzoate units interconnected by a flexible –S-(CH2)2-S– bridge (Fig. 1). The torsion angle S—CH2—CH2—S is 72.88 (16)°. The two aromatic rings form a dihedral angle of 79.99 (6)°. The C1(sp2)-S bond length [1.769 (2) Å] is significantly shorter than the C8(sp3)-S [1.814 (2) Å] bond length due to p-π conjugation. There are no significant S···S nor S···O contacts present in the structure and C—H···π (arene) hydrogen bonds and aromatic π···π stacking interactions are also absent. In the crystal, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular structure (Fig. 2).