organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2,2′-[ethane-1,2-diylbis(sulfanedi­yl)]dibenzoate

aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467002, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: xiaominghu10@163.com

(Received 10 June 2010; accepted 11 June 2010; online 16 June 2010)

The title compound, C18H18O4S2, was synthesized by the reaction of 1,2-dibromo­ethane with methyl thio­salicylate. The complete molecule is generated by crystallographic twofold symmetry: two methyl benzoate units are linked by an –S–(CH2)2–S– bridging chain with a gauche S—CH2—CH2—S torsion angle [72.88 (16)°]. The two aromatic rings form a dihedral angle of 79.99 (6)°. In the crystal, adjacent mol­ecules are linked into a three-dimensional network by non-classical C—H⋯O hydrogen bonds.

Related literature

For the potential use of dithiodibenzoates in the construction of diverse frameworks with tailored properties and functions, see: Humphrey et al. (2004[Humphrey, S. M., Mole, R. A., Rawson, J. M. & Wood, P. T. (2004). Dalton Trans. pp. 1670-1678.]); Li et al. (2007[Li, X.-H., Jia, S.-C. & Jalbout, A. F. (2007). Z. Kristallogr. New Cryst. Struct. 222, 117-118.]); Murugavel et al. (2001[Murugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870-6878.]); Wang et al. (2004[Wang, S., Mao-Lin, H. & Chen, F. (2004). Acta Cryst. E60, m413-m415.]); Zhou et al. (2009[Zhou, L.-M., Zhang, Q. & Hu, M. (2009). Acta Cryst. E65, m1221-m1222.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O4S2

  • Mr = 362.44

  • Monoclinic, C 2

  • a = 15.077 (3) Å

  • b = 5.3913 (10) Å

  • c = 12.495 (2) Å

  • β = 120.662 (2)°

  • V = 873.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.52 × 0.32 × 0.22 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.850, Tmax = 0.932

  • 3836 measured reflections

  • 1948 independent reflections

  • 1864 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.08

  • 1948 reflections

  • 110 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 834 Friedel pairs

  • Flack parameter: −0.02 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.51 3.435 (2) 171
Symmetry code: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The flexibility and conformational freedom of the disulfide derivatives of the benzoate – dithiodibenzoates - provides a possibility for the construction of diverse frameworks with tailored properties and functions (Murugavel et al., 2001; Humphrey et al., 2004; Wang et al. 2004; Li et al., 2007; Zhou et al., 2009). The flexible bridging ligands adopt unusually twisted structures with different C—S—S—C torsion angles in constructing complexes.

The title compound described here is a longer analogue of 2,2'-dithiodibenzoate with the two methyl benzoate units interconnected by a flexible –S-(CH2)2-S– bridge (Fig. 1). The torsion angle S—CH2—CH2—S is 72.88 (16)°. The two aromatic rings form a dihedral angle of 79.99 (6)°. The C1(sp2)-S bond length [1.769 (2) Å] is significantly shorter than the C8(sp3)-S [1.814 (2) Å] bond length due to p-π conjugation. There are no significant S···S nor S···O contacts present in the structure and C—H···π (arene) hydrogen bonds and aromatic π···π stacking interactions are also absent. In the crystal, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular structure (Fig. 2).

Related literature top

For complexes of 2,2'-dithiodibenzoic acid, see: Humphrey et al. (2004); Li et al. (2007); Murugavel et al. (2001); Wang et al. (2004); Zhou et al. (2009).

Experimental top

The title compound was synthesized as follows: a solution of 1,2-dibromoethane (0.94 g, 5 mmol) in methanol (10 ml) was added dropwise to a mixture of methyl thiosalicylate (1.85 g, 11 mmol), KOH (0.617 g, 11 mmol) and ethanol (10 ml). The reaction mixture was stirred and heated for 12 h. The precipitate was filtered off, washed with water.Yield 72%; Colourless block crystals suitable for single-crystals X-ray analysis were obtained by recrystallization from an acetonitrile solution.

Refinement top

Hydrogen atoms were placed in calculated positions [C—H = 0.93–0.97 Å] and refined as riding [Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl)].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids. Unlabeled atoms are related to labeled atoms by the symmetry code (-x, y, -z).
[Figure 2] Fig. 2. View of the connections inter- and intramolecules in (I) with the C—H···O interactions shown as orange dashed lines.
Dimethyl 2,2'-[ethane-1,2-diylbis(sulfanediyl)]dibenzoate top
Crystal data top
C18H18O4S2F(000) = 380
Mr = 362.44Dx = 1.378 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2178 reflections
a = 15.077 (3) Åθ = 2.7–27.4°
b = 5.3913 (10) ŵ = 0.32 mm1
c = 12.495 (2) ÅT = 296 K
β = 120.662 (2)°Block, colourless
V = 873.6 (3) Å30.52 × 0.32 × 0.22 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
1948 independent reflections
Radiation source: fine-focus sealed tube1864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1918
Tmin = 0.850, Tmax = 0.932k = 66
3836 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.1272P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1948 reflectionsΔρmax = 0.23 e Å3
110 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 834 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (7)
Crystal data top
C18H18O4S2V = 873.6 (3) Å3
Mr = 362.44Z = 2
Monoclinic, C2Mo Kα radiation
a = 15.077 (3) ŵ = 0.32 mm1
b = 5.3913 (10) ÅT = 296 K
c = 12.495 (2) Å0.52 × 0.32 × 0.22 mm
β = 120.662 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
1948 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1864 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.932Rint = 0.023
3836 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.23 e Å3
S = 1.08Δρmin = 0.15 e Å3
1948 reflectionsAbsolute structure: Flack (1983), 834 Friedel pairs
110 parametersAbsolute structure parameter: 0.02 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24609 (11)0.0317 (4)0.17607 (14)0.0440 (3)
C20.31876 (12)0.1986 (4)0.26461 (15)0.0455 (4)
C30.42223 (14)0.1865 (5)0.29514 (18)0.0590 (5)
H30.47000.29700.35300.071*
C40.45387 (16)0.0121 (6)0.2402 (2)0.0689 (7)
H40.52240.00620.26060.083*
C50.38363 (18)0.1516 (5)0.1556 (2)0.0694 (7)
H50.40510.26950.11920.083*
C60.28109 (16)0.1440 (4)0.12343 (19)0.0577 (5)
H60.23480.25740.06600.069*
C70.28831 (13)0.3846 (4)0.32683 (16)0.0478 (4)
C80.05804 (14)0.2095 (4)0.02558 (17)0.0525 (4)
H8A0.07170.19160.04200.063*
H8B0.08790.36490.06790.063*
C90.3458 (2)0.6901 (7)0.4813 (3)0.0898 (8)
H9A0.28590.78210.42300.135*
H9B0.40350.80080.52330.135*
H9C0.33300.61190.54110.135*
O10.36822 (11)0.5052 (4)0.41658 (15)0.0793 (5)
O20.20111 (11)0.4248 (3)0.30111 (15)0.0675 (4)
S10.11495 (3)0.04719 (7)0.13359 (4)0.04790 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0394 (7)0.0510 (9)0.0398 (7)0.0110 (9)0.0188 (6)0.0069 (9)
C20.0355 (8)0.0578 (11)0.0388 (8)0.0087 (7)0.0157 (7)0.0098 (7)
C30.0380 (9)0.0805 (14)0.0535 (10)0.0051 (9)0.0198 (8)0.0137 (10)
C40.0461 (10)0.100 (2)0.0675 (12)0.0304 (14)0.0340 (9)0.0303 (14)
C50.0659 (14)0.0845 (17)0.0697 (14)0.0365 (12)0.0433 (12)0.0199 (12)
C60.0567 (11)0.0623 (12)0.0551 (11)0.0187 (10)0.0292 (9)0.0041 (9)
C70.0387 (9)0.0555 (11)0.0409 (8)0.0024 (8)0.0143 (7)0.0010 (8)
C80.0529 (10)0.0413 (9)0.0474 (10)0.0051 (8)0.0141 (8)0.0028 (7)
C90.0861 (18)0.0898 (19)0.0753 (16)0.0203 (16)0.0279 (14)0.0349 (16)
O10.0477 (7)0.1046 (15)0.0671 (8)0.0113 (9)0.0159 (6)0.0323 (10)
O20.0418 (7)0.0789 (10)0.0765 (9)0.0027 (7)0.0264 (7)0.0284 (8)
S10.03542 (19)0.0520 (2)0.0488 (2)0.0033 (2)0.01601 (15)0.0082 (2)
Geometric parameters (Å, º) top
C1—C61.401 (3)C6—H60.9300
C1—C21.413 (3)C7—O21.203 (2)
C1—S11.7685 (15)C7—O11.324 (2)
C2—C31.406 (2)C8—C8i1.527 (4)
C2—C71.478 (3)C8—S11.8143 (19)
C3—C41.384 (4)C8—H8A0.9700
C3—H30.9300C8—H8B0.9700
C4—C51.370 (4)C9—O11.429 (3)
C4—H40.9300C9—H9A0.9600
C5—C61.386 (3)C9—H9B0.9600
C5—H50.9300C9—H9C0.9600
C6—C1—C2118.08 (15)O2—C7—O1122.42 (19)
C6—C1—S1121.47 (16)O2—C7—C2124.88 (16)
C2—C1—S1120.44 (14)O1—C7—C2112.71 (16)
C3—C2—C1119.52 (18)C8i—C8—S1108.52 (12)
C3—C2—C7119.22 (18)C8i—C8—H8A110.0
C1—C2—C7121.26 (14)S1—C8—H8A110.0
C4—C3—C2120.8 (2)C8i—C8—H8B110.0
C4—C3—H3119.6S1—C8—H8B110.0
C2—C3—H3119.6H8A—C8—H8B108.4
C5—C4—C3119.61 (18)O1—C9—H9A109.5
C5—C4—H4120.2O1—C9—H9B109.5
C3—C4—H4120.2H9A—C9—H9B109.5
C4—C5—C6120.9 (2)O1—C9—H9C109.5
C4—C5—H5119.5H9A—C9—H9C109.5
C6—C5—H5119.5H9B—C9—H9C109.5
C5—C6—C1121.0 (2)C7—O1—C9116.51 (17)
C5—C6—H6119.5C1—S1—C8102.68 (10)
C1—C6—H6119.5
C6—C1—C2—C31.1 (3)S1—C1—C6—C5178.76 (16)
S1—C1—C2—C3178.69 (15)C3—C2—C7—O2173.83 (19)
C6—C1—C2—C7178.26 (18)C1—C2—C7—O26.8 (3)
S1—C1—C2—C71.9 (2)C3—C2—C7—O16.6 (3)
C1—C2—C3—C40.4 (3)C1—C2—C7—O1172.80 (18)
C7—C2—C3—C4178.97 (18)O2—C7—O1—C90.9 (3)
C2—C3—C4—C50.4 (3)C2—C7—O1—C9179.6 (2)
C3—C4—C5—C60.5 (3)C6—C1—S1—C82.60 (18)
C4—C5—C6—C10.3 (3)C2—C1—S1—C8177.58 (15)
C2—C1—C6—C51.1 (3)C8i—C8—S1—C1176.60 (15)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.932.342.679 (3)101
C4—H4···O2ii0.932.513.435 (2)171
Symmetry code: (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC18H18O4S2
Mr362.44
Crystal system, space groupMonoclinic, C2
Temperature (K)296
a, b, c (Å)15.077 (3), 5.3913 (10), 12.495 (2)
β (°) 120.662 (2)
V3)873.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.52 × 0.32 × 0.22
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.850, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
3836, 1948, 1864
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.08
No. of reflections1948
No. of parameters110
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.15
Absolute structureFlack (1983), 834 Friedel pairs
Absolute structure parameter0.02 (7)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.513.435 (2)171.2
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Top-Class Foundation of Pingdingshan University (grant No. 2006047).

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHumphrey, S. M., Mole, R. A., Rawson, J. M. & Wood, P. T. (2004). Dalton Trans. pp. 1670–1678.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLi, X.-H., Jia, S.-C. & Jalbout, A. F. (2007). Z. Kristallogr. New Cryst. Struct. 222, 117–118.  CAS Google Scholar
First citationMurugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870–6878.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Mao-Lin, H. & Chen, F. (2004). Acta Cryst. E60, m413–m415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationZhou, L.-M., Zhang, Q. & Hu, M. (2009). Acta Cryst. E65, m1221–m1222.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds