metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­chromium(III) pyridine-2,4,6-tri­carboxyl­ate dihydrate

aDepartment of Chemistry, Government College University, 54000 Lahore, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 June 2010; accepted 19 June 2010; online 26 June 2010)

The chromium(III) atom in the title salt, [Cr(H2O)6](C8H2NO6)·2H2O, has an octa­hedral coordination geometry. In the crystal, the cation, anion and uncoordinated water mol­ecules, both of which are disordered over two positions in a 1:1 ratio, are linked by O—H⋯O hydrogen bonds.

Related literature

For the crystal structure of hexa­aqua­chromium(III) acetate, see: Eshel & Bino (2001[Eshel, M. & Bino, A. (2001). Inorg. Chim. Acta, 320, 127-132.]). For the synthesis of 2,4,6-pyridine­tricarb­oxy­lic acid, see: Syper et al. (1980[Syper, L., Kloc, K. & Mlochowski, J. (1980). Tetrahedron, 36, 123-129.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(H2O)6](C8H2NO6)·2H2O

  • Mr = 404.23

  • Monoclinic, P 21 /c

  • a = 7.8610 (3) Å

  • b = 16.9269 (5) Å

  • c = 11.6823 (4) Å

  • β = 100.649 (1)°

  • V = 1527.70 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.11 × 0.07 × 0.05 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.915, Tmax = 0.960

  • 14299 measured reflections

  • 3507 independent reflections

  • 2486 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.152

  • S = 0.98

  • 3507 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

Cr1—O1w 1.964 (2)
Cr1—O2w 1.957 (2)
Cr1—O3w 1.941 (2)
Cr1—O4w 1.947 (2)
Cr1—O5w 1.977 (3)
Cr1—O6w 1.952 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O1 0.84 1.78 2.592 (3) 164
O1w—H12⋯O5i 0.84 1.93 2.757 (3) 167
O2w—H21⋯O2 0.84 1.75 2.565 (3) 164
O2w—H22⋯O4ii 0.84 1.82 2.662 (3) 177
O3w—H31⋯O1iii 0.84 1.86 2.670 (3) 164
O3w—H32⋯O6iii 0.84 1.85 2.667 (3) 163
O4w—H41⋯O6i 0.84 1.74 2.555 (4) 162
O4w—H42⋯O7wiv 0.84 2.05 2.798 (6) 149
O4w—H42⋯O8wiv 0.84 1.69 2.448 (7) 149
O5w—H51⋯O3iv 0.84 2.38 3.070 (5) 140
O5w—H52⋯O8wv 0.84 2.01 2.812 (6) 161
O6w—H61⋯O3ii 0.84 1.70 2.533 (4) 172
O6w—H62⋯O7wvi 0.84 1.78 2.600 (6) 165
O6w—H62⋯O7wvi 0.84 2.04 2.780 (7) 148
O7w—H72⋯O2 0.84 2.13 2.860 (6) 146
O7w—H71⋯O8w 0.84 2.32 2.865 (8) 123
O8w—H82⋯O4ii 0.84 1.83 2.649 (6) 164
O8w—H81⋯O5vii 0.84 2.06 2.896 (8) 178
O7w′—H73⋯O2 0.84 2.02 2.840 (7) 167
O7w′—H74⋯O4ii 0.84 2.17 2.993 (7) 167
O8w′—H83⋯O3 0.84 1.89 2.729 (6) 179
O8w′—H84⋯O7w 0.84 1.91 2.744 (9) 171
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The pyridine-2,4,6-tricarboxylate anion is a multifunctional ligand having nitrogen-donor as well as several oxygen-donor sites. Chelation to chromium is expected. However, its reaction with the chromium(III) ion gave instead a salt in which the cation is coordinated by water molecules only (Scheme I, Fig. 1). Interestingly, the only report of a hexaaquachromium carboxylate crystal structure appears to be that of the acetate, an industrially important chemical (Eshel & Bino, 2001). There are no lattice water molecules in the crystal structure.

Related literature top

For the crystal structure of hexaaquachromum(III) acetate, see: Eshel & Bino (2001). For the synthesis of 2,4,6-pyridinetricarboxylic acid, see: Syper et al. (1980).

Experimental top

Pyridine-2,4,6-tricarboxylicacid was prepared by the oxidation of 2,4,6-trimethylpyridine with potassium permanganate(Syper et al., 1980). Chromium chloride hexahydrate (0.03 g, 0.13 mmol) was dissolved in water (10 ml) and this was mixed with the acid (0.11 g, 0.50 mmol) dissolved in water (10 ml). The solution was briefly heated and then set aside for the growth of light purple crystals over several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The two water moleces are both disordered over two positions that, from symmetry considerations, must be in a 1:1 ratio. The water H-atoms were placed in chemically sensible positions on the basis of hydrogen bonding but were not refined (O–H 0.84 Å).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Cr(H2O)6](C8H2NO6).2H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Hexaaquachromium(III) pyridine-2,4,6-tricarboxylate dihydrate top
Crystal data top
[Cr(H2O)6](C8H2NO6)·2H2OF(000) = 836
Mr = 404.23Dx = 1.758 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2431 reflections
a = 7.8610 (3) Åθ = 2.6–24.6°
b = 16.9269 (5) ŵ = 0.83 mm1
c = 11.6823 (4) ÅT = 293 K
β = 100.649 (1)°Prism, purple
V = 1527.70 (9) Å30.11 × 0.07 × 0.05 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3507 independent reflections
Radiation source: fine-focus sealed tube2486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.915, Tmax = 0.960k = 2121
14299 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0867P)2 + 0.7924P]
where P = (Fo2 + 2Fc2)/3
3507 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cr(H2O)6](C8H2NO6)·2H2OV = 1527.70 (9) Å3
Mr = 404.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8610 (3) ŵ = 0.83 mm1
b = 16.9269 (5) ÅT = 293 K
c = 11.6823 (4) Å0.11 × 0.07 × 0.05 mm
β = 100.649 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
3507 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2486 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.960Rint = 0.060
14299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 0.98Δρmax = 0.64 e Å3
3507 reflectionsΔρmin = 0.54 e Å3
235 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.54053 (7)0.15648 (3)0.39171 (4)0.02536 (19)
O10.4502 (3)0.36658 (14)0.53968 (19)0.0282 (6)
O20.3235 (4)0.37338 (16)0.3540 (2)0.0408 (7)
O30.0565 (4)0.6012 (2)0.2197 (2)0.0684 (11)
O40.1258 (3)0.68517 (15)0.3489 (2)0.0386 (7)
O50.2467 (3)0.66964 (13)0.7612 (2)0.0307 (6)
O60.3712 (4)0.55364 (15)0.8057 (2)0.0395 (7)
O1w0.5769 (4)0.22599 (15)0.5287 (2)0.0506 (9)
H110.55170.27400.52680.076*
H120.64080.21480.59210.076*
O2w0.4111 (3)0.23657 (14)0.29037 (19)0.0293 (6)
H210.39120.27860.32350.044*
H220.31940.22040.24830.044*
O3w0.5096 (3)0.08414 (13)0.26061 (19)0.0313 (6)
H310.47650.10510.19540.047*
H320.44700.04480.26750.047*
O4w0.6735 (4)0.07453 (15)0.4853 (2)0.0419 (7)
H410.65140.05800.54870.063*
H420.73680.04180.45920.063*
O5w0.7577 (3)0.19559 (15)0.3495 (2)0.0378 (6)
H510.79380.15650.31700.057*
H520.82170.20300.41450.057*
O6w0.3271 (4)0.11722 (18)0.4342 (2)0.0448 (7)
H610.24180.10820.38100.067*
H620.29970.10850.49910.067*
N10.3130 (3)0.50687 (15)0.5851 (2)0.0211 (6)
C10.3554 (4)0.39985 (19)0.4552 (3)0.0236 (7)
C20.2751 (4)0.47842 (18)0.4768 (3)0.0216 (7)
C30.1641 (4)0.5174 (2)0.3883 (3)0.0245 (7)
H30.14170.49680.31320.029*
C40.0871 (4)0.58741 (19)0.4134 (3)0.0234 (7)
C50.1272 (4)0.61709 (19)0.5264 (3)0.0232 (7)
H50.07780.66390.54620.028*
C60.2426 (4)0.57513 (18)0.6089 (3)0.0215 (7)
C70.2909 (4)0.60201 (19)0.7341 (3)0.0250 (7)
C80.0413 (5)0.6290 (2)0.3203 (3)0.0308 (8)
O7w0.2400 (7)0.4369 (3)0.1235 (4)0.0362 (12)0.50
H710.13490.43210.12750.054*0.50
H720.30620.42470.18590.054*0.50
O8w0.0236 (8)0.3188 (3)0.0680 (5)0.0536 (16)0.50
H810.08880.32360.11710.080*0.50
H820.02660.27510.08140.080*0.50
O7w'0.1532 (10)0.3598 (4)0.1183 (6)0.0642 (19)0.50
H730.20430.37160.18570.096*0.50
H740.13740.31070.11590.096*0.50
O8w'0.0632 (8)0.5126 (4)0.0562 (5)0.0511 (15)0.50
H830.02620.54020.10620.077*0.50
H840.08550.46670.08190.077*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0390 (3)0.0177 (3)0.0159 (3)0.0005 (2)0.0040 (2)0.0007 (2)
O10.0399 (14)0.0225 (12)0.0204 (12)0.0080 (10)0.0004 (10)0.0002 (9)
O20.0606 (18)0.0325 (14)0.0237 (13)0.0142 (13)0.0072 (12)0.0098 (11)
O30.078 (2)0.105 (3)0.0187 (14)0.061 (2)0.0003 (14)0.0002 (15)
O40.0399 (15)0.0322 (14)0.0374 (15)0.0130 (12)0.0090 (12)0.0016 (12)
O50.0469 (16)0.0169 (12)0.0250 (12)0.0030 (10)0.0022 (11)0.0040 (9)
O60.0665 (19)0.0258 (13)0.0215 (12)0.0134 (12)0.0041 (12)0.0021 (10)
O1w0.094 (2)0.0261 (14)0.0208 (13)0.0157 (14)0.0177 (14)0.0072 (11)
O2w0.0361 (14)0.0213 (12)0.0255 (12)0.0018 (10)0.0077 (10)0.0021 (10)
O3w0.0541 (16)0.0202 (12)0.0169 (11)0.0106 (11)0.0007 (11)0.0009 (9)
O4w0.074 (2)0.0245 (14)0.0222 (12)0.0123 (13)0.0027 (13)0.0049 (10)
O5w0.0334 (14)0.0268 (14)0.0489 (16)0.0008 (11)0.0039 (12)0.0021 (12)
O6w0.0473 (17)0.061 (2)0.0250 (13)0.0072 (14)0.0043 (12)0.0031 (13)
N10.0249 (14)0.0167 (13)0.0201 (13)0.0004 (10)0.0002 (11)0.0011 (10)
C10.0268 (17)0.0210 (16)0.0221 (16)0.0021 (13)0.0022 (13)0.0014 (13)
C20.0234 (16)0.0192 (16)0.0207 (15)0.0014 (13)0.0005 (13)0.0025 (12)
C30.0247 (17)0.0285 (18)0.0186 (15)0.0015 (14)0.0001 (13)0.0018 (13)
C40.0233 (16)0.0245 (17)0.0212 (16)0.0009 (13)0.0013 (13)0.0063 (13)
C50.0235 (16)0.0195 (16)0.0262 (16)0.0015 (13)0.0032 (13)0.0005 (13)
C60.0232 (16)0.0190 (16)0.0210 (16)0.0056 (12)0.0009 (13)0.0001 (12)
C70.0310 (18)0.0204 (16)0.0221 (16)0.0020 (14)0.0012 (13)0.0009 (13)
C80.0286 (18)0.038 (2)0.0249 (18)0.0067 (15)0.0019 (14)0.0095 (15)
O7w0.038 (3)0.041 (3)0.027 (3)0.005 (2)0.001 (2)0.002 (2)
O8w0.052 (4)0.036 (3)0.063 (4)0.005 (3)0.016 (3)0.002 (3)
O7w'0.095 (6)0.051 (4)0.046 (4)0.003 (4)0.012 (4)0.008 (3)
O8w'0.059 (4)0.048 (4)0.050 (3)0.004 (3)0.019 (3)0.006 (3)
Geometric parameters (Å, º) top
Cr1—O1w1.964 (2)O6w—H610.8391
Cr1—O2w1.957 (2)O6w—H620.8385
Cr1—O3w1.941 (2)N1—C61.332 (4)
Cr1—O4w1.947 (2)N1—C21.335 (4)
Cr1—O5w1.977 (3)C1—C21.513 (5)
Cr1—O6w1.952 (3)C2—C31.390 (4)
O1—C11.255 (4)C3—C41.386 (5)
O2—C11.246 (4)C3—H30.9300
O3—C81.251 (5)C4—C51.392 (4)
O4—C81.240 (4)C4—C81.514 (4)
O5—C71.254 (4)C5—C61.391 (4)
O6—C71.254 (4)C5—H50.9300
O1w—H110.8363C6—C71.512 (4)
O1w—H120.8369O7w—H710.8401
O2w—H210.8381O7w—H720.8400
O2w—H220.8398O8w—H810.8400
O3w—H310.8370O8w—H820.8400
O3w—H320.8395O7w'—H730.8400
O4w—H410.8393O7w'—H740.8399
O4w—H420.8390O8w'—H830.8400
O5w—H510.8387O8w'—H840.8400
O5w—H520.8387
O3w—Cr1—O4w88.26 (11)Cr1—O6w—H62131.7
O3w—Cr1—O6w89.85 (11)H61—O6w—H62109.5
O4w—Cr1—O6w90.70 (13)C6—N1—C2118.8 (3)
O3w—Cr1—O2w89.10 (10)O2—C1—O1124.8 (3)
O4w—Cr1—O2w176.95 (11)O2—C1—C2117.2 (3)
O6w—Cr1—O2w90.82 (11)O1—C1—C2118.0 (3)
O3w—Cr1—O1w177.52 (10)N1—C2—C3122.2 (3)
O4w—Cr1—O1w89.26 (11)N1—C2—C1116.6 (3)
O6w—Cr1—O1w89.96 (13)C3—C2—C1121.2 (3)
O2w—Cr1—O1w93.38 (10)C4—C3—C2119.2 (3)
O3w—Cr1—O5w90.16 (11)C4—C3—H3120.4
O4w—Cr1—O5w88.84 (12)C2—C3—H3120.4
O6w—Cr1—O5w179.54 (12)C3—C4—C5118.6 (3)
O2w—Cr1—O5w89.63 (10)C3—C4—C8120.3 (3)
O1w—Cr1—O5w90.00 (13)C5—C4—C8121.1 (3)
Cr1—O1w—H11124.3C6—C5—C4118.5 (3)
Cr1—O1w—H12124.0C6—C5—H5120.8
H11—O1w—H12110.1C4—C5—H5120.8
Cr1—O2w—H21115.4N1—C6—C5122.8 (3)
Cr1—O2w—H22115.0N1—C6—C7115.0 (3)
H21—O2w—H22109.5C5—C6—C7122.1 (3)
Cr1—O3w—H31115.0O5—C7—O6123.8 (3)
Cr1—O3w—H32114.5O5—C7—C6119.1 (3)
H31—O3w—H32109.5O6—C7—C6117.0 (3)
Cr1—O4w—H41123.8O4—C8—O3125.3 (3)
Cr1—O4w—H42124.0O4—C8—C4118.8 (3)
H41—O4w—H42109.5O3—C8—C4115.8 (3)
Cr1—O5w—H51103.2H71—O7w—H72112.7
Cr1—O5w—H52103.1H81—O8w—H82106.5
H51—O5w—H52109.4H73—O7w'—H74108.0
Cr1—O6w—H61118.7H83—O8w'—H84110.0
C6—N1—C2—C30.3 (5)C2—N1—C6—C51.9 (5)
C6—N1—C2—C1178.7 (3)C2—N1—C6—C7179.1 (3)
O2—C1—C2—N1178.7 (3)C4—C5—C6—N11.7 (5)
O1—C1—C2—N10.5 (5)C4—C5—C6—C7178.8 (3)
O2—C1—C2—C32.9 (5)N1—C6—C7—O5171.9 (3)
O1—C1—C2—C3177.8 (3)C5—C6—C7—O510.8 (5)
N1—C2—C3—C41.3 (5)N1—C6—C7—O69.4 (5)
C1—C2—C3—C4177.0 (3)C5—C6—C7—O6167.8 (3)
C2—C3—C4—C51.4 (5)C3—C4—C8—O4170.1 (3)
C2—C3—C4—C8176.9 (3)C5—C4—C8—O48.2 (5)
C3—C4—C5—C60.0 (5)C3—C4—C8—O37.7 (5)
C8—C4—C5—C6178.3 (3)C5—C4—C8—O3174.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.841.782.592 (3)164
O1w—H12···O5i0.841.932.757 (3)167
O2w—H21···O20.841.752.565 (3)164
O2w—H22···O4ii0.841.822.662 (3)177
O3w—H31···O1iii0.841.862.670 (3)164
O3w—H32···O6iii0.841.852.667 (3)163
O4w—H41···O6i0.841.742.555 (4)162
O4w—H42···O7wiv0.842.052.798 (6)149
O4w—H42···O8wiv0.841.692.448 (7)149
O5w—H51···O3iv0.842.383.070 (5)140
O5w—H52···O8wv0.842.012.812 (6)161
O6w—H61···O3ii0.841.702.533 (4)172
O6w—H62···O7wvi0.841.782.600 (6)165
O6w—H62···O7wvi0.842.042.780 (7)148
O7w—H72···O20.842.132.860 (6)146
O7w—H71···O8w0.842.322.865 (8)123
O8w—H82···O4ii0.841.832.649 (6)164
O8w—H81···O5vii0.842.062.896 (8)178
O7w—H73···O20.842.022.840 (7)167
O7w—H74···O4ii0.842.172.993 (7)167
O8w—H83···O30.841.892.729 (6)179
O8w—H84···O7w0.841.912.744 (9)171
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cr(H2O)6](C8H2NO6)·2H2O
Mr404.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.8610 (3), 16.9269 (5), 11.6823 (4)
β (°) 100.649 (1)
V3)1527.70 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.11 × 0.07 × 0.05
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.915, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
14299, 3507, 2486
Rint0.060
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.152, 0.98
No. of reflections3507
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cr1—O1w1.964 (2)Cr1—O4w1.947 (2)
Cr1—O2w1.957 (2)Cr1—O5w1.977 (3)
Cr1—O3w1.941 (2)Cr1—O6w1.952 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.841.782.592 (3)164
O1w—H12···O5i0.841.932.757 (3)167
O2w—H21···O20.841.752.565 (3)164
O2w—H22···O4ii0.841.822.662 (3)177
O3w—H31···O1iii0.841.862.670 (3)164
O3w—H32···O6iii0.841.852.667 (3)163
O4w—H41···O6i0.841.742.555 (4)162
O4w—H42···O7wiv0.842.052.798 (6)149
O4w—H42···O8w'iv0.841.692.448 (7)149
O5w—H51···O3iv0.842.383.070 (5)140
O5w—H52···O8wv0.842.012.812 (6)161
O6w—H61···O3ii0.841.702.533 (4)172
O6w—H62···O7wvi0.841.782.600 (6)165
O6w—H62···O7w'vi0.842.042.780 (7)148
O7w—H72···O20.842.132.860 (6)146
O7w—H71···O8w0.842.322.865 (8)123
O8w—H82···O4ii0.841.832.649 (6)164
O8w—H81···O5vii0.842.062.896 (8)178
O7w'—H73···O20.842.022.840 (7)167
O7w'—H74···O4ii0.842.172.993 (7)167
O8w'—H83···O30.841.892.729 (6)179
O8w'—H84···O7w'0.841.912.744 (9)171
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x, y+1, z+1.
 

Acknowledgements

We thank GC University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEshel, M. & Bino, A. (2001). Inorg. Chim. Acta, 320, 127–132.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyper, L., Kloc, K. & Mlochowski, J. (1980). Tetrahedron, 36, 123–129.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds