organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(9-Ethyl-9H-carbazol-3-yl)methyl­­idene­amino]-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aChemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 June 2010; accepted 19 June 2010; online 26 June 2010)

The imino–carbon double bond in the title Schiff base, C26H24N4O, has an E configuration. The 13-membered carbazolyl fused-ring (r.m.s. deviation = 0.056 Å) is nearly coplanar with five-membered pyrazole ring (r.m.s. deviation = 0.036 Å) [dihedral angle between the two systems = 10.4 (1)°]; the phenyl substituent is twisted by 51.1 (1)° with respect to the five-membered ring.

Related literature

For background to this class of Schiff bases, see: Montalvo-González & Ariza-Castolo (2003[Montalvo-González, R. & Ariza-Castolo, A. (2003). J. Mol. Struct. 655, 375-389.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24N4O

  • Mr = 408.49

  • Monoclinic, P 21 /n

  • a = 10.4458 (6) Å

  • b = 18.2674 (11) Å

  • c = 10.8989 (6) Å

  • β = 96.127 (1)°

  • V = 2067.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 19772 measured reflections

  • 4756 independent reflections

  • 4000 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.02

  • 4756 reflections

  • 283 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

4-Aminoantipyrine (4-amino-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one) possesses a pyrazolone unit, a feature that is important to the design of non-steroidal anti-inflammatory chemicals. Its amino group group allows the chemical to condense with aromatic aldehydes to yield Schiff bases. The crystal structures of a large number of such Schiff bases have been reported. For the Schiff base derived from the benzaldehyde homolog, the phenyl and pyrazoly rings are nearly coplanar (Montalvo-González & Ariza-Castolo, 2003). In the title carbazole-aldehyde analog (Scheme I, Fig. 1), the 13-membered carbazolyl fused-ring is nearly coplanar with 5-membered pyrazolyl ring [dihedral angle between the two systems 10.4 (1) °]. The phenyl substituent is twisted by 51.1 (1) ° with respect to the 5-membered ring.

Related literature top

For background to this class of Schiff bases, see: Montalvo-González & Ariza-Castolo (2003).

Experimental top

9-Ethylcarbazole-3-carboxaldehyde (0.50 g, 2.2 mmol) and 4-aminoantipyrine (0.45 g, 2.2 mmol) here heated in methanol (15 ml) for 5 h to afford a light yellow precipitate. The solid material was collected and recrystallized from methanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, U(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C26H24N4O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-[(9-Ethyl-9H-carbazol-3-yl)methylideneamino]-1,5-dimethyl- 2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C26H24N4OF(000) = 864
Mr = 408.49Dx = 1.312 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7258 reflections
a = 10.4458 (6) Åθ = 2.2–28.3°
b = 18.2674 (11) ŵ = 0.08 mm1
c = 10.8989 (6) ÅT = 100 K
β = 96.127 (1)°Prism, yellow
V = 2067.8 (2) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4000 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω scansh = 1313
19772 measured reflectionsk = 2323
4756 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.720P]
where P = (Fo2 + 2Fc2)/3
4756 reflections(Δ/σ)max < 0.001
283 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C26H24N4OV = 2067.8 (2) Å3
Mr = 408.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4458 (6) ŵ = 0.08 mm1
b = 18.2674 (11) ÅT = 100 K
c = 10.8989 (6) Å0.25 × 0.20 × 0.20 mm
β = 96.127 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4000 reflections with I > 2σ(I)
19772 measured reflectionsRint = 0.031
4756 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
4756 reflectionsΔρmin = 0.25 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60645 (8)0.54578 (4)0.40022 (8)0.02038 (19)
N11.35714 (9)0.68186 (6)0.65745 (9)0.0206 (2)
N20.75630 (9)0.69353 (6)0.47222 (9)0.0175 (2)
N30.43648 (9)0.70479 (5)0.32066 (9)0.0178 (2)
N40.44409 (9)0.62867 (5)0.33728 (9)0.0179 (2)
C11.36337 (11)0.75748 (7)0.66819 (11)0.0196 (2)
C21.46850 (12)0.80129 (8)0.70917 (12)0.0250 (3)
H21.55080.78050.73300.030*
C31.44906 (13)0.87620 (8)0.71402 (12)0.0269 (3)
H31.51920.90720.74190.032*
C41.32833 (13)0.90704 (7)0.67875 (11)0.0255 (3)
H41.31770.95860.68330.031*
C51.22368 (12)0.86349 (7)0.63713 (11)0.0213 (3)
H51.14200.88480.61260.026*
C61.24060 (11)0.78774 (7)0.63197 (10)0.0178 (2)
C71.15504 (11)0.72649 (6)0.60145 (10)0.0165 (2)
C81.02461 (11)0.72027 (6)0.56055 (10)0.0167 (2)
H80.97370.76290.54340.020*
C90.96945 (11)0.65098 (6)0.54505 (10)0.0172 (2)
C101.04661 (12)0.58849 (6)0.57261 (11)0.0193 (2)
H101.00700.54160.56600.023*
C111.17744 (11)0.59244 (6)0.60877 (11)0.0196 (2)
H111.22830.54960.62410.023*
C121.23104 (11)0.66235 (7)0.62169 (10)0.0179 (2)
C131.46091 (11)0.63045 (7)0.69520 (11)0.0223 (3)
H13A1.54450.65350.68320.027*
H13B1.45090.58640.64200.027*
C141.46196 (15)0.60749 (9)0.82923 (13)0.0357 (3)
H14A1.53180.57230.85010.054*
H14B1.37940.58470.84160.054*
H14C1.47540.65060.88250.054*
C150.83444 (11)0.63985 (6)0.49658 (10)0.0175 (2)
H150.80370.59130.48270.021*
C160.56810 (11)0.60962 (6)0.38971 (10)0.0165 (2)
C170.63052 (11)0.67924 (6)0.42004 (10)0.0163 (2)
C180.54672 (11)0.73382 (6)0.37959 (10)0.0169 (2)
C190.56536 (12)0.81422 (6)0.39240 (11)0.0208 (3)
H19A0.53600.83820.31390.031*
H19B0.65690.82480.41470.031*
H19C0.51550.83270.45710.031*
C200.31008 (11)0.73921 (7)0.31473 (12)0.0221 (3)
H20A0.32030.79140.33390.033*
H20B0.25960.71600.37480.033*
H20C0.26540.73340.23160.033*
C210.35842 (11)0.58088 (6)0.26541 (10)0.0170 (2)
C220.31925 (12)0.59525 (7)0.14157 (11)0.0207 (3)
H220.34820.63800.10340.025*
C230.23735 (12)0.54634 (7)0.07451 (11)0.0217 (3)
H230.21000.55600.00990.026*
C240.19515 (11)0.48364 (7)0.12940 (11)0.0209 (3)
H240.13940.45030.08300.025*
C250.23514 (12)0.47000 (7)0.25284 (11)0.0208 (2)
H250.20670.42690.29060.025*
C260.31609 (11)0.51841 (6)0.32186 (11)0.0186 (2)
H260.34220.50900.40660.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0190 (4)0.0166 (4)0.0248 (4)0.0015 (3)0.0012 (3)0.0022 (3)
N10.0129 (5)0.0230 (5)0.0254 (5)0.0016 (4)0.0005 (4)0.0015 (4)
N20.0141 (5)0.0215 (5)0.0164 (4)0.0007 (4)0.0006 (4)0.0016 (4)
N30.0157 (5)0.0142 (5)0.0227 (5)0.0007 (4)0.0022 (4)0.0005 (4)
N40.0160 (5)0.0145 (5)0.0222 (5)0.0003 (4)0.0030 (4)0.0019 (4)
C10.0169 (6)0.0236 (6)0.0187 (5)0.0015 (5)0.0040 (4)0.0004 (4)
C20.0173 (6)0.0327 (7)0.0250 (6)0.0050 (5)0.0031 (5)0.0012 (5)
C30.0263 (6)0.0318 (7)0.0229 (6)0.0139 (5)0.0040 (5)0.0009 (5)
C40.0346 (7)0.0208 (6)0.0214 (6)0.0079 (5)0.0043 (5)0.0010 (5)
C50.0249 (6)0.0203 (6)0.0186 (5)0.0017 (5)0.0024 (5)0.0018 (4)
C60.0166 (5)0.0219 (6)0.0153 (5)0.0020 (4)0.0029 (4)0.0001 (4)
C70.0174 (6)0.0171 (5)0.0153 (5)0.0005 (4)0.0027 (4)0.0000 (4)
C80.0162 (5)0.0178 (5)0.0159 (5)0.0017 (4)0.0009 (4)0.0002 (4)
C90.0155 (5)0.0204 (6)0.0154 (5)0.0008 (4)0.0009 (4)0.0015 (4)
C100.0207 (6)0.0167 (6)0.0201 (5)0.0003 (4)0.0006 (4)0.0033 (4)
C110.0190 (6)0.0175 (6)0.0218 (6)0.0042 (4)0.0002 (4)0.0023 (4)
C120.0142 (5)0.0222 (6)0.0173 (5)0.0018 (4)0.0009 (4)0.0012 (4)
C130.0141 (5)0.0283 (6)0.0243 (6)0.0055 (5)0.0010 (4)0.0021 (5)
C140.0337 (8)0.0478 (9)0.0254 (7)0.0170 (7)0.0021 (6)0.0019 (6)
C150.0174 (5)0.0190 (6)0.0159 (5)0.0016 (4)0.0004 (4)0.0016 (4)
C160.0142 (5)0.0212 (6)0.0138 (5)0.0005 (4)0.0002 (4)0.0017 (4)
C170.0157 (5)0.0185 (6)0.0147 (5)0.0008 (4)0.0011 (4)0.0008 (4)
C180.0157 (5)0.0198 (6)0.0149 (5)0.0013 (4)0.0009 (4)0.0016 (4)
C190.0218 (6)0.0172 (6)0.0226 (6)0.0001 (5)0.0017 (5)0.0023 (4)
C200.0167 (6)0.0225 (6)0.0265 (6)0.0028 (5)0.0001 (5)0.0001 (5)
C210.0128 (5)0.0174 (5)0.0202 (5)0.0003 (4)0.0000 (4)0.0006 (4)
C220.0215 (6)0.0188 (6)0.0215 (6)0.0037 (5)0.0003 (5)0.0039 (4)
C230.0238 (6)0.0216 (6)0.0188 (6)0.0006 (5)0.0024 (5)0.0012 (5)
C240.0182 (6)0.0187 (6)0.0251 (6)0.0020 (5)0.0001 (5)0.0036 (5)
C250.0203 (6)0.0168 (6)0.0256 (6)0.0017 (5)0.0043 (5)0.0025 (5)
C260.0172 (5)0.0199 (6)0.0185 (5)0.0017 (4)0.0020 (4)0.0021 (4)
Geometric parameters (Å, º) top
O1—C161.2344 (14)C11—C121.3956 (17)
N1—C121.3799 (15)C11—H110.9500
N1—C11.3873 (16)C13—C141.5187 (18)
N1—C131.4598 (15)C13—H13A0.9900
N2—C151.2853 (15)C13—H13B0.9900
N2—C171.3994 (14)C14—H14A0.9800
N3—C181.3646 (14)C14—H14B0.9800
N3—N41.4034 (13)C14—H14C0.9800
N3—C201.4577 (15)C15—H150.9500
N4—C161.4028 (14)C16—C171.4511 (16)
N4—C211.4237 (14)C17—C181.3682 (16)
C1—C21.3933 (17)C18—C191.4861 (16)
C1—C61.4134 (16)C19—H19A0.9800
C2—C31.385 (2)C19—H19B0.9800
C2—H20.9500C19—H19C0.9800
C3—C41.397 (2)C20—H20A0.9800
C3—H30.9500C20—H20B0.9800
C4—C51.3884 (17)C20—H20C0.9800
C4—H40.9500C21—C261.3907 (16)
C5—C61.3969 (17)C21—C221.3929 (16)
C5—H50.9500C22—C231.3895 (16)
C6—C71.4484 (16)C22—H220.9500
C7—C81.3922 (16)C23—C241.3857 (17)
C7—C121.4192 (16)C23—H230.9500
C8—C91.3935 (16)C24—C251.3880 (17)
C8—H80.9500C24—H240.9500
C9—C101.4112 (16)C25—C261.3881 (16)
C9—C151.4664 (15)C25—H250.9500
C10—C111.3832 (16)C26—H260.9500
C10—H100.9500
C12—N1—C1108.40 (10)C14—C13—H13B109.2
C12—N1—C13124.84 (10)H13A—C13—H13B107.9
C1—N1—C13126.16 (10)C13—C14—H14A109.5
C15—N2—C17119.32 (10)C13—C14—H14B109.5
C18—N3—N4106.92 (9)H14A—C14—H14B109.5
C18—N3—C20124.62 (10)C13—C14—H14C109.5
N4—N3—C20118.15 (9)H14A—C14—H14C109.5
C16—N4—N3109.60 (9)H14B—C14—H14C109.5
C16—N4—C21124.82 (10)N2—C15—C9122.27 (11)
N3—N4—C21120.86 (9)N2—C15—H15118.9
N1—C1—C2128.85 (11)C9—C15—H15118.9
N1—C1—C6109.44 (10)O1—C16—N4123.27 (10)
C2—C1—C6121.70 (12)O1—C16—C17132.33 (11)
C3—C2—C1117.77 (12)N4—C16—C17104.38 (9)
C3—C2—H2121.1C18—C17—N2122.39 (10)
C1—C2—H2121.1C18—C17—C16107.99 (10)
C2—C3—C4121.29 (12)N2—C17—C16129.46 (10)
C2—C3—H3119.4N3—C18—C17110.31 (10)
C4—C3—H3119.4N3—C18—C19121.59 (10)
C5—C4—C3121.00 (12)C17—C18—C19128.09 (10)
C5—C4—H4119.5C18—C19—H19A109.5
C3—C4—H4119.5C18—C19—H19B109.5
C4—C5—C6118.82 (12)H19A—C19—H19B109.5
C4—C5—H5120.6C18—C19—H19C109.5
C6—C5—H5120.6H19A—C19—H19C109.5
C5—C6—C1119.41 (11)H19B—C19—H19C109.5
C5—C6—C7134.17 (11)N3—C20—H20A109.5
C1—C6—C7106.34 (10)N3—C20—H20B109.5
C8—C7—C12119.64 (10)H20A—C20—H20B109.5
C8—C7—C6134.06 (11)N3—C20—H20C109.5
C12—C7—C6106.30 (10)H20A—C20—H20C109.5
C7—C8—C9119.39 (11)H20B—C20—H20C109.5
C7—C8—H8120.3C26—C21—C22120.59 (11)
C9—C8—H8120.3C26—C21—N4118.08 (10)
C8—C9—C10119.31 (10)C22—C21—N4121.33 (10)
C8—C9—C15122.61 (10)C23—C22—C21119.29 (11)
C10—C9—C15118.04 (10)C23—C22—H22120.4
C11—C10—C9122.89 (11)C21—C22—H22120.4
C11—C10—H10118.6C24—C23—C22120.71 (11)
C9—C10—H10118.6C24—C23—H23119.6
C10—C11—C12116.75 (11)C22—C23—H23119.6
C10—C11—H11121.6C23—C24—C25119.35 (11)
C12—C11—H11121.6C23—C24—H24120.3
N1—C12—C11128.71 (11)C25—C24—H24120.3
N1—C12—C7109.39 (10)C26—C25—C24120.92 (11)
C11—C12—C7121.87 (10)C26—C25—H25119.5
N1—C13—C14112.18 (10)C24—C25—H25119.5
N1—C13—H13A109.2C25—C26—C21119.14 (11)
C14—C13—H13A109.2C25—C26—H26120.4
N1—C13—H13B109.2C21—C26—H26120.4
C18—N3—N4—C169.38 (12)C8—C7—C12—C113.85 (17)
C20—N3—N4—C16156.12 (10)C6—C7—C12—C11175.87 (11)
C18—N3—N4—C21166.14 (10)C12—N1—C13—C1481.94 (15)
C20—N3—N4—C2147.12 (15)C1—N1—C13—C1488.12 (15)
C12—N1—C1—C2175.55 (12)C17—N2—C15—C9176.64 (10)
C13—N1—C1—C24.1 (2)C8—C9—C15—N24.26 (18)
C12—N1—C1—C63.37 (13)C10—C9—C15—N2178.02 (11)
C13—N1—C1—C6174.79 (11)N3—N4—C16—O1170.71 (10)
N1—C1—C2—C3178.53 (12)C21—N4—C16—O115.08 (18)
C6—C1—C2—C30.28 (18)N3—N4—C16—C177.67 (12)
C1—C2—C3—C40.18 (19)C21—N4—C16—C17163.30 (10)
C2—C3—C4—C50.24 (19)C15—N2—C17—C18172.81 (11)
C3—C4—C5—C60.56 (18)C15—N2—C17—C161.92 (18)
C4—C5—C6—C10.46 (17)O1—C16—C17—C18174.95 (12)
C4—C5—C6—C7175.81 (12)N4—C16—C17—C183.22 (12)
N1—C1—C6—C5179.06 (10)O1—C16—C17—N20.4 (2)
C2—C1—C6—C50.04 (17)N4—C16—C17—N2178.54 (11)
N1—C1—C6—C71.84 (13)N4—N3—C18—C177.25 (13)
C2—C1—C6—C7177.17 (11)C20—N3—C18—C17151.26 (11)
C5—C6—C7—C83.4 (2)N4—N3—C18—C19173.40 (10)
C1—C6—C7—C8179.98 (12)C20—N3—C18—C1929.39 (17)
C5—C6—C7—C12176.29 (13)N2—C17—C18—N3173.21 (10)
C1—C6—C7—C120.32 (12)C16—C17—C18—N32.51 (13)
C12—C7—C8—C92.68 (17)N2—C17—C18—C196.09 (19)
C6—C7—C8—C9176.94 (12)C16—C17—C18—C19178.19 (11)
C7—C8—C9—C100.78 (16)C16—N4—C21—C2662.98 (15)
C7—C8—C9—C15176.91 (10)N3—N4—C21—C26143.95 (11)
C8—C9—C10—C113.41 (17)C16—N4—C21—C22116.02 (13)
C15—C9—C10—C11174.39 (11)N3—N4—C21—C2237.05 (16)
C9—C10—C11—C122.29 (18)C26—C21—C22—C230.13 (18)
C1—N1—C12—C11174.53 (12)N4—C21—C22—C23178.84 (11)
C13—N1—C12—C112.97 (19)C21—C22—C23—C240.31 (19)
C1—N1—C12—C73.58 (13)C22—C23—C24—C250.22 (19)
C13—N1—C12—C7175.14 (10)C23—C24—C25—C260.31 (18)
C10—C11—C12—N1179.23 (11)C24—C25—C26—C210.74 (18)
C10—C11—C12—C71.34 (17)C22—C21—C26—C250.65 (18)
C8—C7—C12—N1177.90 (10)N4—C21—C26—C25178.36 (10)
C6—C7—C12—N12.39 (13)

Experimental details

Crystal data
Chemical formulaC26H24N4O
Mr408.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.4458 (6), 18.2674 (11), 10.8989 (6)
β (°) 96.127 (1)
V3)2067.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19772, 4756, 4000
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.02
No. of reflections4756
No. of parameters283
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMontalvo-González, R. & Ariza-Castolo, A. (2003). J. Mol. Struct. 655, 375–389.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds