organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Cyano­meth­yl)anilinium 4-methyl­benzene­sulfonate monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: linjinrui23@163.com

(Received 17 May 2010; accepted 28 May 2010; online 5 June 2010)

In the title salt, C8H9N2+·C7H7O3S·H2O, the dihedral angle between the cation and anion benzene rings is 50.1 (4)°. In the cation, the cyano­methyl group is twisted from the plane of the benzene ring [C—C—C—N = −86 (12)°]. In the crystal, the cations, anions and water mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming a chain along the c axis.

Related literature

For phase transition materials and metal-organic coordination compounds, see: Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]); Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]); Liu et al. (2005[Liu, Y., Lu, Y., Prashad, M., Repic, O. & Blacklock, T. (2005). Adv. Synth. Catal. 347, 217-219.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N2+·C7H7O3S·H2O

  • Mr = 322.38

  • Tetragonal, [I \overline 4]

  • a = 22.931 (2) Å

  • c = 5.946 (2) Å

  • V = 3126.6 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.45 × 0.40 × 0.25 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.903, Tmax = 0.945

  • 15184 measured reflections

  • 3089 independent reflections

  • 2723 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.196

  • S = 1.05

  • 3089 reflections

  • 200 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1383 Friedel pairs

  • Flack parameter: 0.05 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4D⋯O3 0.85 1.90 2.746 (7) 179
N1—H1A⋯O3i 0.89 2.09 2.886 (6) 148
N1—H1B⋯O1ii 0.89 2.11 2.850 (6) 140
N1—H1C⋯O4 0.89 2.35 2.972 (6) 127
Symmetry codes: (i) x, y, z+1; (ii) y, -x+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The title compound, (I), is a continuation of our study of phase transition materials, which include organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009) and the dielectric constant of 4-(cyanomethyl)anilinium 4-methylbenzenesulfonate as a function of temperature. Our study indicating that the permittivity is temperature-independent (dielectric constant equals 7.6 to 14.1), suggests that there may be no distinct phase transition in (I) within the measured temperature range.

The asymmetric unit of the title compound (Fig.1),contains 4-(cyanomethyl)anilinium cations, 4-methylbenzenesulfonate anions and water molecules in the stoichiometric ratio of 1:1:1. The dihedral angle between the two cation-anion benzene rings is 50.1 (4)°. In the cation, the cyanomethyl group is twisted from the plane of the benzene ring (C4/C7/C8/N2 = -86 (12)°) and the methyl group is planar with the ring. In the anion, both the sylfonyl and methyl groups are planar with the benxene ring. Bond distances (Allen et al., 1987) and angles are in normal ranges. In the crystal structure (Fig.2), cations, anions and water molecules are linked by intermolecular N—H···O and O—H···O hydrogen bonds, forming a one-dimensional chain along the c axis, assisting crystal packing.

Related literature top

For phase transition materials and metal-orginc coordination compounds, see: Zhang et al. (2009); Li et al. (2008); Liu et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

2-(4-aminophenyl)acetonitrile was prepared from 2-(4-nitrophenyl)acetonitrile according to the reported method (Liu Y et al., 2005). Single crystals of 4-(cyanomethyl)anilinium 4-methylbenzenesulfonate were prepared by slow evaporation at room temperature of an equuimolar methanol-water solution for 10 h.

Refinement top

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the H atoms attached to the carbon atoms were constrained in a riding motion approximation. Caryl—H = 0.93 Å, with Uĩso(H) = 1.2Ueq(C). Cmethyl—H = 0.96 Å, with Uiso(H)=1.5Ueq(C). N—H = 0.89 Å, Uĩso(H) = 1.5Ueq(N). The hydroxyl hydrogen were placed at ideal positions and refined using a 'rotating' model for hydroxyl H atom with Uiso(H) = 1.5 Ueq (O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, with stacking along the c axis. Dashed lines indicate N—H···O and O—H···O hydrogen bonds.
4-(Cyanomethyl)anilinium 4-methylbenzenesulfonate monohydrate top
Crystal data top
C8H9N2+·C7H7O3S·H2ODx = 1.370 Mg m3
Mr = 322.38Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 5655 reflections
Hall symbol: I -4θ = 3.5–27.5°
a = 22.931 (2) ŵ = 0.23 mm1
c = 5.946 (2) ÅT = 293 K
V = 3126.6 (11) Å3Prism, orange
Z = 80.45 × 0.40 × 0.25 mm
F(000) = 1360
Data collection top
Rigaku SCXmini
diffractometer
3089 independent reflections
Radiation source: fine-focus sealed tube2723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.5°
CCD_Profile_fitting scansh = 2828
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2828
Tmin = 0.903, Tmax = 0.945l = 77
15184 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.120P)2 + 1.4624P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3089 reflectionsΔρmax = 0.54 e Å3
200 parametersΔρmin = 0.24 e Å3
5 restraintsAbsolute structure: Flack (1983), 1383 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (16)
Crystal data top
C8H9N2+·C7H7O3S·H2OZ = 8
Mr = 322.38Mo Kα radiation
Tetragonal, I4µ = 0.23 mm1
a = 22.931 (2) ÅT = 293 K
c = 5.946 (2) Å0.45 × 0.40 × 0.25 mm
V = 3126.6 (11) Å3
Data collection top
Rigaku SCXmini
diffractometer
3089 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2723 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.945Rint = 0.068
15184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.196Δρmax = 0.54 e Å3
S = 1.05Δρmin = 0.24 e Å3
3089 reflectionsAbsolute structure: Flack (1983), 1383 Friedel pairs
200 parametersAbsolute structure parameter: 0.05 (16)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C90.80554 (19)0.68688 (19)0.6159 (9)0.0451 (10)
C100.7993 (2)0.6601 (2)0.4099 (9)0.0509 (12)
H10A0.83210.65570.31950.061*
C110.74716 (19)0.6397 (2)0.3328 (8)0.0444 (11)
H11A0.74490.62110.19420.053*
C120.69775 (19)0.64693 (18)0.4622 (7)0.0368 (9)
C130.7012 (2)0.6746 (2)0.6699 (8)0.0451 (11)
H13A0.66800.68020.75750.054*
C140.7554 (2)0.6937 (2)0.7428 (9)0.0486 (11)
H14A0.75810.71180.88230.058*
C150.8629 (3)0.7090 (3)0.7022 (12)0.0718 (17)
H15A0.89290.70110.59370.086*
H15B0.87220.68980.84120.086*
H15C0.86040.75030.72690.086*
O10.58469 (14)0.65351 (15)0.4733 (6)0.0567 (10)
O20.62991 (15)0.62234 (19)0.1289 (6)0.0679 (10)
O30.62786 (15)0.55881 (15)0.4448 (7)0.0608 (10)
O40.5601 (2)0.5210 (3)0.7965 (10)0.112 (2)
H4D0.58080.53240.68640.168*
H4B0.57070.53870.91530.168*
S10.62993 (5)0.61860 (5)0.37106 (18)0.0416 (3)
C10.7116 (2)0.49056 (19)1.0648 (8)0.0409 (10)
C20.7262 (2)0.51689 (19)0.8664 (9)0.0468 (10)
H2B0.69850.52270.75460.056*
C30.7830 (2)0.5346 (2)0.8365 (9)0.0512 (12)
H3B0.79340.55360.70420.061*
C40.8251 (2)0.5248 (2)0.9986 (9)0.0451 (11)
C50.8087 (2)0.4970 (2)1.1943 (9)0.0499 (12)
H5A0.83650.48961.30440.060*
C60.7516 (2)0.4798 (2)1.2302 (8)0.0495 (11)
H6A0.74070.46141.36310.059*
C70.8871 (2)0.5456 (3)0.9678 (10)0.0616 (15)
H7A0.89080.58431.03220.074*
H7B0.91300.51991.05010.074*
C80.9054 (3)0.5476 (3)0.7358 (13)0.0763 (18)
N10.65068 (16)0.47274 (18)1.1017 (8)0.0531 (10)
H1A0.63160.50131.17160.080*
H1B0.64990.44071.18610.080*
H1C0.63380.46550.96990.080*
N20.9217 (3)0.5462 (3)0.5409 (11)0.0937 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.045 (2)0.037 (2)0.053 (3)0.0032 (18)0.004 (2)0.001 (2)
C100.043 (2)0.056 (3)0.054 (3)0.001 (2)0.015 (2)0.003 (2)
C110.048 (3)0.045 (2)0.041 (2)0.001 (2)0.009 (2)0.006 (2)
C120.043 (2)0.031 (2)0.036 (2)0.0017 (18)0.0014 (18)0.0012 (17)
C130.050 (3)0.046 (2)0.039 (3)0.004 (2)0.005 (2)0.007 (2)
C140.056 (3)0.043 (2)0.048 (3)0.000 (2)0.005 (2)0.003 (2)
C150.056 (3)0.069 (4)0.091 (5)0.015 (3)0.005 (3)0.005 (3)
O10.0433 (18)0.059 (2)0.068 (2)0.0101 (16)0.0096 (17)0.0105 (18)
O20.051 (2)0.111 (3)0.0417 (18)0.009 (2)0.0004 (18)0.007 (2)
O30.059 (2)0.0404 (18)0.083 (3)0.0032 (16)0.0072 (19)0.0012 (17)
O40.107 (4)0.118 (4)0.110 (5)0.026 (3)0.014 (3)0.029 (4)
S10.0416 (6)0.0415 (6)0.0416 (5)0.0043 (5)0.0002 (5)0.0030 (5)
C10.041 (2)0.037 (2)0.044 (3)0.0030 (18)0.0073 (19)0.0069 (19)
C20.052 (3)0.042 (2)0.047 (3)0.001 (2)0.005 (2)0.000 (2)
C30.063 (3)0.045 (3)0.046 (3)0.003 (2)0.008 (2)0.001 (2)
C40.040 (2)0.045 (3)0.050 (3)0.0037 (19)0.001 (2)0.012 (2)
C50.049 (3)0.053 (3)0.048 (3)0.003 (2)0.005 (2)0.008 (2)
C60.060 (3)0.052 (3)0.036 (2)0.000 (2)0.001 (2)0.006 (2)
C70.052 (3)0.070 (4)0.062 (3)0.006 (3)0.005 (3)0.027 (3)
C80.056 (4)0.095 (5)0.078 (5)0.012 (3)0.001 (3)0.003 (4)
N10.042 (2)0.058 (2)0.059 (3)0.0061 (18)0.005 (2)0.009 (2)
N20.077 (4)0.124 (5)0.080 (4)0.016 (4)0.012 (3)0.005 (4)
Geometric parameters (Å, º) top
C9—C101.378 (7)C1—C21.367 (7)
C9—C141.384 (7)C1—C61.367 (7)
C9—C151.500 (7)C1—N11.473 (6)
C10—C111.363 (7)C2—C31.376 (7)
C10—H10A0.9300C2—H2B0.9300
C11—C121.379 (6)C3—C41.383 (7)
C11—H11A0.9300C3—H3B0.9300
C12—C131.391 (6)C4—C51.380 (7)
C12—S11.771 (4)C4—C71.511 (7)
C13—C141.388 (7)C5—C61.384 (7)
C13—H13A0.9300C5—H5A0.9300
C14—H14A0.9300C6—H6A0.9300
C15—H15A0.9600C7—C81.442 (9)
C15—H15B0.9600C7—H7A0.9700
C15—H15C0.9600C7—H7B0.9700
O1—S11.445 (3)C8—N21.218 (9)
O2—S11.443 (4)N1—H1A0.8900
O3—S11.440 (4)N1—H1B0.8900
O4—H4D0.8500N1—H1C0.8900
O4—H4B0.8499
C10—C9—C14116.6 (4)C2—C1—C6122.5 (4)
C10—C9—C15123.1 (5)C2—C1—N1118.9 (4)
C14—C9—C15120.2 (5)C6—C1—N1118.6 (4)
C11—C10—C9122.9 (4)C1—C2—C3118.3 (5)
C11—C10—H10A118.5C1—C2—H2B120.9
C9—C10—H10A118.5C3—C2—H2B120.9
C10—C11—C12119.4 (5)C2—C3—C4121.5 (5)
C10—C11—H11A120.3C2—C3—H3B119.3
C12—C11—H11A120.3C4—C3—H3B119.3
C11—C12—C13120.3 (4)C3—C4—C5118.2 (4)
C11—C12—S1120.4 (3)C3—C4—C7121.4 (5)
C13—C12—S1119.3 (3)C5—C4—C7120.4 (5)
C14—C13—C12118.2 (4)C6—C5—C4121.4 (5)
C14—C13—H13A120.9C6—C5—H5A119.3
C12—C13—H13A120.9C4—C5—H5A119.3
C9—C14—C13122.6 (5)C1—C6—C5118.1 (4)
C9—C14—H14A118.7C1—C6—H6A120.9
C13—C14—H14A118.7C5—C6—H6A120.9
C9—C15—H15A109.5C8—C7—C4113.6 (5)
C9—C15—H15B109.5C8—C7—H7A108.9
H15A—C15—H15B109.5C4—C7—H7A108.9
C9—C15—H15C109.5C8—C7—H7B108.9
H15A—C15—H15C109.5C4—C7—H7B108.9
H15B—C15—H15C109.5H7A—C7—H7B107.7
H4D—O4—H4B109.5N2—C8—C7176.5 (9)
O3—S1—O2111.1 (3)C1—N1—H1A109.5
O3—S1—O1112.1 (2)C1—N1—H1B109.5
O2—S1—O1112.8 (2)H1A—N1—H1B109.5
O3—S1—C12106.6 (2)C1—N1—H1C109.5
O2—S1—C12106.5 (2)H1A—N1—H1C109.5
O1—S1—C12107.4 (2)H1B—N1—H1C109.5
C14—C9—C10—C111.5 (7)C13—C12—S1—O128.4 (4)
C15—C9—C10—C11179.5 (5)C6—C1—C2—C32.0 (7)
C9—C10—C11—C121.5 (8)N1—C1—C2—C3178.4 (4)
C10—C11—C12—C130.2 (7)C1—C2—C3—C41.9 (7)
C10—C11—C12—S1177.7 (4)C2—C3—C4—C50.5 (7)
C11—C12—C13—C140.9 (7)C2—C3—C4—C7178.5 (5)
S1—C12—C13—C14176.7 (4)C3—C4—C5—C60.8 (7)
C10—C9—C14—C130.3 (7)C7—C4—C5—C6177.2 (5)
C15—C9—C14—C13179.3 (5)C2—C1—C6—C50.8 (7)
C12—C13—C14—C90.8 (7)N1—C1—C6—C5179.6 (4)
C11—C12—S1—O385.7 (4)C4—C5—C6—C10.7 (7)
C13—C12—S1—O391.8 (4)C3—C4—C7—C830.1 (8)
C11—C12—S1—O233.0 (4)C5—C4—C7—C8152.0 (6)
C13—C12—S1—O2149.5 (4)C4—C7—C8—N286 (12)
C11—C12—S1—O1154.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O30.851.902.746 (7)179
N1—H1A···O3i0.892.092.886 (6)148
N1—H1B···O1ii0.892.112.850 (6)140
N1—H1C···O40.892.352.972 (6)127
Symmetry codes: (i) x, y, z+1; (ii) y, x+1, z+2.

Experimental details

Crystal data
Chemical formulaC8H9N2+·C7H7O3S·H2O
Mr322.38
Crystal system, space groupTetragonal, I4
Temperature (K)293
a, c (Å)22.931 (2), 5.946 (2)
V3)3126.6 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.45 × 0.40 × 0.25
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.903, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
15184, 3089, 2723
Rint0.068
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.196, 1.05
No. of reflections3089
No. of parameters200
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.24
Absolute structureFlack (1983), 1383 Friedel pairs
Absolute structure parameter0.05 (16)

Computer programs: CrystalClear (Rigaku, 2005), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O30.851.902.746 (7)178.9
N1—H1A···O3i0.892.092.886 (6)147.6
N1—H1B···O1ii0.892.112.850 (6)140.2
N1—H1C···O40.892.352.972 (6)126.7
Symmetry codes: (i) x, y, z+1; (ii) y, x+1, z+2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationLiu, Y., Lu, Y., Prashad, M., Repic, O. & Blacklock, T. (2005). Adv. Synth. Catal. 347, 217–219.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds