metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bromido­copper(II)–18-crown-6–water (1/1/2)

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wsp1314@126.com

(Received 29 May 2010; accepted 17 June 2010; online 23 June 2010)

In the title compound, [CuBr2(H2O)2]·C12H24O6·2H2O, the CuII atom, which is situated on an inversion centre and has a slightly distorted square-planar geometry, and the two coordinated water mol­ecules are linked to the 18-crown-6 macrocycles by O—H⋯O hydrogen bonds. The water mol­ecule of crystallization further links the metal complex and the crown ether macrocycles into a chain along the c axis.

Related literature

For the ability of 18-crown-6 ether to form complexes with different metal ions, see: Jackson et al. (1981[Jackson, W. G., Sargeson, A. M., Tucker, P. A. & Watson, A. D. (1981). J. Am. Chem. Soc. 103, 533-540.]); Otter & Hartshorn (2004[Otter, C. A. & Hartshorn, R. M. (2004). J. Chem. Soc. Dalton Trans. pp. 150-156.]). For similar structures, see: Antsyshkina et al. (2004[Antsyshkina, A. S., Sadikov, G. G., Koksharova, T. V. & Sergienko, V. S. (2004). Zh. Neorg. Khim. 49, 1797-1800.]); Liu et al. (2007[Liu, X., Guo, G.-C. & Sun, Y.-Y. (2007). Acta Cryst. E63, m275-m277.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr2(H2O)2]·C12H24O6·2H2O

  • Mr = 559.73

  • Triclinic, [P \overline 1]

  • a = 7.4418 (5) Å

  • b = 8.1724 (6) Å

  • c = 10.1510 (2) Å

  • α = 75.220 (3)°

  • β = 69.47 (1)°

  • γ = 78.51 (1)°

  • V = 554.90 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.63 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.397, Tmax = 0.412

  • 5746 measured reflections

  • 2537 independent reflections

  • 2064 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.155

  • S = 1.08

  • 2537 reflections

  • 123 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.27 e Å−3

  • Δρmin = −1.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4W—H4WA⋯O1i 0.68 (7) 2.30 (8) 2.962 (6) 167 (9)
O4W—H4WB⋯O3i 0.93 (8) 1.95 (8) 2.869 (6) 170 (6)
O5W—H5WA⋯O2 0.85 1.92 2.715 (5) 156
O5W—H5WB⋯O4W 0.85 1.82 2.609 (6) 155
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The ability of 18-crown-6 ether (18-C-6) to form complexes with different metal ions has been widely investigated (Jackson et al., 1981; Otter & Hartshorn, 2004). We report here the synthesis and crystal structure of an intermediate in the 18-crown-6 ether-mediated solubilization of copper bromide salts, namely [CuBr2(H2O)2 ].(18-crown-6).2H2O, (I).

The crystal structure of (I) consists of CuBr2(H2O)2 complex, one molecule of 18-crown-6 ether and two water molecule in the crystallographic asymmetric unit (Fig. 1). The structure is similar to that found in [CuCl2(H2O)2].(18-crown-6).2H2O (Antsyshkina et al., 2004; Liu et al., 2007), where the Cu atom is bonded to two Br and two H2O molecules in a square planar coordination. The mean Cu—Br and Cu—O bond lengths are 2.3687 (5) Åand 1.911 (4) Å, respectively. Bond length and angles are in normal ranges (Allen et al., 1987). All O atoms in the crown form O—H···Ocrown hydrogen bonds with adjacent coordinated (O5W) and uncoordinated (O4W) water molecules, with average O···O distances of 2.609 Å. Thus, the hydrogen bonds link the crown ethers and Cu complex into a one-dimensional chain along the c axis (Fig. 2).

Related literature top

For the ability of 18-crown-6 ether to form complexes with different metal ions, see: Jackson et al. (1981); Otter & Hartshorn (2004). For similar structures, see: Antsyshkina et al. (2004); Liu et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

CuBr2(44.6 mg, 0.2 mmol) and 18-crown-6 (53 mg, 0.2 mmol) were added to 10 ml of THF and 2 ml H2O, and this reaction mixture was stirred at 333 K for 6 h. After filtration, the resulting filtrate was reduced to 5 ml in a small tube, which was loaded into a large vial containing 5 ml of diethyl ether. The large vial was sealed and left undisturbed at room temperature, and colorless crystals of (I) were obtained in 5 d.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions, with C—H = 0.97 Å, and refined in riding mode, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear (Rigaku 2005); data reduction: CrystalClear (Rigaku 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and the H atoms attached to C have been omitted for clarity. Dashed lines indicate O—H···O hydrogen bonds.
[Figure 2] Fig. 2. One-dimensional chain of (I) showing the Owater—H···Ocrown hydrogen bonds (dashed lines). H atoms attached to C have been omitted.
Diaquadibromidocopper(II)–18-crown-6–water (1/1/2) top
Crystal data top
[CuBr2(H2O)2]·C12H24O6·2H2OZ = 1
Mr = 559.73F(000) = 283
Triclinic, P1Dx = 1.675 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4418 (5) ÅCell parameters from 2622 reflections
b = 8.1724 (6) Åθ = 3.0–27.5°
c = 10.1510 (2) ŵ = 4.63 mm1
α = 75.220 (3)°T = 298 K
β = 69.47 (1)°Prism, green
γ = 78.51 (1)°0.20 × 0.20 × 0.20 mm
V = 554.90 (6) Å3
Data collection top
Rigaku SCXmini
diffractometer
2537 independent reflections
Radiation source: fine-focus sealed tube2064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
k = 1010
Tmin = 0.397, Tmax = 0.412l = 1313
5746 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.8701P]
where P = (Fo2 + 2Fc2)/3
2537 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 1.27 e Å3
0 restraintsΔρmin = 1.55 e Å3
Crystal data top
[CuBr2(H2O)2]·C12H24O6·2H2Oγ = 78.51 (1)°
Mr = 559.73V = 554.90 (6) Å3
Triclinic, P1Z = 1
a = 7.4418 (5) ÅMo Kα radiation
b = 8.1724 (6) ŵ = 4.63 mm1
c = 10.1510 (2) ÅT = 298 K
α = 75.220 (3)°0.20 × 0.20 × 0.20 mm
β = 69.47 (1)°
Data collection top
Rigaku SCXmini
diffractometer
2537 independent reflections
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
2064 reflections with I > 2σ(I)
Tmin = 0.397, Tmax = 0.412Rint = 0.037
5746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.27 e Å3
2537 reflectionsΔρmin = 1.55 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05334 (10)0.20118 (6)0.58028 (6)0.0652 (3)
C10.7159 (11)0.5878 (10)0.2213 (9)0.080 (2)
H1A0.78930.56780.28750.096*
H1B0.58810.64300.26520.096*
C20.6378 (11)0.3049 (11)0.3232 (7)0.082 (2)
H2A0.52370.35350.39030.099*
H2B0.73870.27000.36810.099*
C30.5931 (11)0.1552 (9)0.2897 (7)0.078 (2)
H3A0.70430.11040.21800.094*
H3B0.56240.06640.37550.094*
C40.3741 (11)0.0667 (7)0.2063 (8)0.077 (2)
H4A0.31960.01190.29510.092*
H4B0.48510.00530.14650.092*
C50.2298 (10)0.1320 (9)0.1320 (9)0.079 (2)
H5A0.18340.03780.11660.095*
H5B0.12060.19680.19010.095*
C60.1858 (10)0.3000 (10)0.0843 (10)0.083 (2)
H6A0.07090.36370.03040.100*
H6B0.14660.20520.10450.100*
Cu10.00000.50000.50000.0335 (2)
O10.7004 (6)0.4308 (6)0.1941 (4)0.0626 (10)
O20.4337 (5)0.2051 (5)0.2370 (4)0.0559 (9)
O30.3148 (5)0.2374 (5)0.0014 (5)0.0613 (10)
O4W0.3072 (6)0.6708 (6)0.0637 (4)0.0566 (10)
O5W0.1698 (7)0.4741 (5)0.3133 (4)0.0900 (18)
H5WA0.22290.37560.29790.108*
H5WB0.19200.56100.24550.108*
H4WA0.309 (11)0.633 (10)0.011 (8)0.07 (3)*
H4WB0.436 (11)0.688 (9)0.040 (8)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0949 (5)0.0358 (3)0.0446 (3)0.0137 (3)0.0039 (3)0.0051 (2)
C10.085 (5)0.091 (5)0.092 (5)0.007 (4)0.054 (4)0.043 (4)
C20.088 (5)0.112 (6)0.044 (3)0.010 (4)0.035 (3)0.007 (4)
C30.088 (5)0.066 (4)0.053 (4)0.011 (4)0.016 (3)0.011 (3)
C40.093 (5)0.037 (3)0.066 (4)0.015 (3)0.016 (4)0.006 (3)
C50.066 (4)0.059 (4)0.095 (5)0.033 (3)0.015 (4)0.025 (4)
C60.066 (4)0.084 (5)0.132 (7)0.008 (4)0.045 (5)0.057 (5)
Cu10.0319 (4)0.0385 (4)0.0250 (4)0.0049 (3)0.0047 (3)0.0033 (3)
O10.068 (2)0.077 (3)0.048 (2)0.000 (2)0.023 (2)0.022 (2)
O20.056 (2)0.0428 (19)0.047 (2)0.0025 (16)0.0013 (17)0.0033 (16)
O30.049 (2)0.060 (2)0.073 (3)0.0165 (18)0.0070 (19)0.021 (2)
O4W0.054 (2)0.074 (3)0.034 (2)0.016 (2)0.0026 (17)0.0073 (19)
O5W0.109 (4)0.054 (2)0.040 (2)0.029 (2)0.026 (2)0.0074 (18)
Geometric parameters (Å, º) top
Br1—Cu12.3687 (5)C4—H4B0.9700
C1—O11.414 (8)C5—O31.413 (8)
C1—C6i1.488 (11)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700C6—O31.429 (8)
C2—O11.438 (8)C6—C1i1.488 (11)
C2—C31.476 (11)C6—H6A0.9700
C2—H2A0.9700C6—H6B0.9700
C2—H2B0.9700Cu1—O5Wii1.911 (4)
C3—O21.414 (8)Cu1—O5W1.911 (4)
C3—H3A0.9700Cu1—Br1ii2.3687 (5)
C3—H3B0.9700O4W—H4WA0.68 (7)
C4—O21.432 (8)O4W—H4WB0.93 (8)
C4—C51.463 (11)O5W—H5WA0.8500
C4—H4A0.9700O5W—H5WB0.8500
O1—C1—C6i109.7 (6)O3—C5—H5A109.9
O1—C1—H1A109.7C4—C5—H5A109.9
C6i—C1—H1A109.7O3—C5—H5B109.9
O1—C1—H1B109.7C4—C5—H5B109.9
C6i—C1—H1B109.7H5A—C5—H5B108.3
H1A—C1—H1B108.2O3—C6—C1i109.5 (5)
O1—C2—C3110.2 (5)O3—C6—H6A109.8
O1—C2—H2A109.6C1i—C6—H6A109.8
C3—C2—H2A109.6O3—C6—H6B109.8
O1—C2—H2B109.6C1i—C6—H6B109.8
C3—C2—H2B109.6H6A—C6—H6B108.2
H2A—C2—H2B108.1O5Wii—Cu1—O5W180.000 (1)
O2—C3—C2108.9 (5)O5Wii—Cu1—Br1ii89.03 (12)
O2—C3—H3A109.9O5W—Cu1—Br1ii90.97 (12)
C2—C3—H3A109.9O5Wii—Cu1—Br190.97 (12)
O2—C3—H3B109.9O5W—Cu1—Br189.03 (12)
C2—C3—H3B109.9Br1ii—Cu1—Br1180.0
H3A—C3—H3B108.3C1—O1—C2112.9 (6)
O2—C4—C5109.9 (5)C3—O2—C4113.2 (5)
O2—C4—H4A109.7C5—O3—C6112.7 (5)
C5—C4—H4A109.7H4WA—O4W—H4WB103 (8)
O2—C4—H4B109.7Cu1—O5W—H5WA120.0
C5—C4—H4B109.7Cu1—O5W—H5WB120.0
H4A—C4—H4B108.2H5WA—O5W—H5WB120.0
O3—C5—C4109.1 (5)
O1—C2—C3—O264.8 (7)C2—C3—O2—C4177.8 (5)
O2—C4—C5—O363.1 (7)C5—C4—O2—C3171.2 (5)
C6i—C1—O1—C2169.8 (6)C4—C5—O3—C6177.1 (5)
C3—C2—O1—C1170.5 (6)C1i—C6—O3—C5178.9 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WA···O1i0.68 (7)2.30 (8)2.962 (6)167 (9)
O4W—H4WB···O3i0.93 (8)1.95 (8)2.869 (6)170 (6)
O5W—H5WA···O20.851.922.715 (5)156
O5W—H5WB···O4W0.851.822.609 (6)155
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[CuBr2(H2O)2]·C12H24O6·2H2O
Mr559.73
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4418 (5), 8.1724 (6), 10.1510 (2)
α, β, γ (°)75.220 (3), 69.47 (1), 78.51 (1)
V3)554.90 (6)
Z1
Radiation typeMo Kα
µ (mm1)4.63
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
CrystalClear (Rigaku, 2005)
Tmin, Tmax0.397, 0.412
No. of measured, independent and
observed [I > 2σ(I)] reflections
5746, 2537, 2064
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.155, 1.08
No. of reflections2537
No. of parameters123
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.27, 1.55

Computer programs: CrystalClear (Rigaku 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WA···O1i0.68 (7)2.30 (8)2.962 (6)167 (9)
O4W—H4WB···O3i0.93 (8)1.95 (8)2.869 (6)170 (6)
O5W—H5WA···O20.851.922.715 (5)156.0
O5W—H5WB···O4W0.851.822.609 (6)154.5
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAntsyshkina, A. S., Sadikov, G. G., Koksharova, T. V. & Sergienko, V. S. (2004). Zh. Neorg. Khim. 49, 1797–1800.  CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationJackson, W. G., Sargeson, A. M., Tucker, P. A. & Watson, A. D. (1981). J. Am. Chem. Soc. 103, 533–540.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, X., Guo, G.-C. & Sun, Y.-Y. (2007). Acta Cryst. E63, m275–m277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtter, C. A. & Hartshorn, R. M. (2004). J. Chem. Soc. Dalton Trans. pp. 150–156.  CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds