metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m851-m852

Aqua­{6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}methano­lmanganese(III)) perchlorate hemihydrate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 1 June 2010; accepted 16 June 2010; online 26 June 2010)

The asymmetric unit of the title compound, [Mn(C18H18N2O4)(CH3OH)(H2O)]ClO4·0.5H2O, contains two complex cations and two perchlorate anions, one of which is disordered over two positions in a 0.767 (8):0.233 (8) ratio. The MnIII atoms are in distorted octa­hedral environments. In addition to the equatorial tetra­dentate salicylaldimine ligand, each Mn is axially coordinated by both a methanol and a water mol­ecule. The complex is a dimer held together by multiple strong and weak hydrogen-bonding inter­actions between the coordinated water mol­ecule on one monomer with all the phenolic and meth­oxy O atoms on the other monomer. In addition, the two perchlorate anions are linked by hydrogen bonds to the two methanol mol­ecules coordinated to each Mn center. The Mn—O phenolic bond distances range from 1.868 (2) to 1.882 (2) Å while the Mn—N distances range from 1.978 (2) to 1.981 (2) Å. Mn—O distances for the axial water and methanol ligands are longer at 2.226 (2)/2.257 (2) and 2.313 (2)/2.324 (2) Å, reflecting the usual Jahn–Teller distortion as found in MnIII complexes.

Related literature

For background to the use of manganese–salen compounds as single mol­ecule magnets, see: Mandal et al. (2009[Mandal, S., Rosair, G., Ribas, J. & Bandyopadhyay, D. (2009). Inorg. Chim. Acta, 362, 2200-2204.]); Miyasaka et al. (2007[Miyasaka, H., Saitoh, A. & Abe, S. (2007). Coord. Chem. Rev. 251, 2622-2664.]); Yuan et al. (2007[Yuan, M., Zhao, F., Zhang, W., Pan, F., Wang, Z.-M. & Gao, S. (2007). Chem. Eur. J. 13, 2937-2952.]). For the use of Mn(III)–salen complexes as catalysts, see: Abashkin & Burt (2004[Abashkin, Y. G. & Burt, S. K. (2004). J. Phys. Chem. B, 108, 2708-2711.]); Chatto­padhyay et al. (2007[Chattopadhyay, T., Islam, S., Nethaji, M., Majee, A. & Das, D. (2007). J. Mol. Catal. A, 267, 255-264.]); Katsuki (2000[Katsuki, T. (2000). Peroxide Chem. pp. 303-319.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C18H18N2O4)(CH4O)(H2O)]ClO4·0.5H2O

  • Mr = 539.80

  • Monoclinic, C 2

  • a = 22.7438 (15) Å

  • b = 13.3986 (9) Å

  • c = 16.3266 (10) Å

  • β = 101.324 (7)°

  • V = 4878.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 115 K

  • 0.55 × 0.35 × 0.31 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Mo) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO, CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.610, Tmax = 1.000

  • 19303 measured reflections

  • 13163 independent reflections

  • 10458 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 0.98

  • 13163 reflections

  • 631 parameters

  • 55 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.84 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3800 Friedel pairs

  • Flack parameter: 0.254 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1SA—H1SA⋯O11 0.84 1.97 2.788 (3) 165
O1WA—H1W1⋯O3B 0.80 (2) 2.15 (2) 2.830 (3) 142 (3)
O1WA—H1W1⋯O1B 0.80 (2) 2.27 (3) 2.964 (3) 145 (3)
O1WA—H1W2⋯O4B 0.81 (2) 2.19 (2) 2.944 (3) 155 (3)
O1WA—H1W2⋯O2B 0.81 (2) 2.26 (3) 2.886 (3) 135 (3)
O1SB—H1SB⋯O21 0.84 2.02 2.737 (4) 143
O1SB—H1SB⋯O21B 0.84 2.33 3.010 (13) 139
O1SB—H1SB⋯O23B 0.84 2.50 3.312 (13) 163
O1WB—H1W3⋯O4A 0.82 (2) 2.23 (2) 2.944 (3) 146 (3)
O1WB—H1W3⋯O2A 0.82 (2) 2.19 (3) 2.885 (3) 143 (3)
O1WB—H1W4⋯O1A 0.83 (2) 2.12 (3) 2.868 (3) 151 (3)
O1WB—H1W4⋯O3A 0.83 (2) 2.36 (2) 2.997 (4) 135 (3)

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO, CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Small molecules of manganese(III) salen compounds are of great interest due to the fact that they can exhibit high spin complexes with S = 2 and therefore display strong magnetic uniaxial anisotropy in which the magnetic easy axis can be found as the Jahn Teller axis (Miyasaka et al., 2007). They have been designed as unique magnetic systems involving molecular supermagnets such as single molecule magnets (SMM) and single chain magnets. Mandal et al., (2009) synthesized a phenoxo bridged binuclear manganese(III) Schiff base complex Mn(L)(N3) where L is N,N-bis(salicyldene)-1,2-propanediamine and showed that at low temperature the complex exhibited intra-dimer ferromagnet exchange and single molecule magnet (SMM) behavior. (Yuan et al. (2007) conducted magnetic characterization of Mn(III) salen compounds bridged by NCNH and found that they transmit antiferromagnetic interactions between Mn(III) ions and often favored the weak ferromagnetism caused by spin canting in these one dimensional chains.

Six coordinated Mn(III)salen)OCl complex have been shown to exhibit the highest efficiency in catalyzing the epoxidation reaction irrespective of oxidant and solvent used (Chattopadhyay et al., 2007). Mn(III) salen compounds have proved to be promising as synthetic antioxidants, in particular dismutation of H2O2 resulting into 2 water molecules and oxygen and they are used to study the catalytic mechanism of the functional biomimetic enzymes (Abashkin & Burt, 2004). Achiral salen manganese complexes have been used as catalysts for asymmetric epoxidation (Katsuki, 2000).

In the title compound, C38H50Cl2Mn2N4O21, each Mn is in a distorted octahedral environment. Each metal ion in the complex is coordinated to both a methanol and a water molecule. The complex is a dimer held to together by multiple strong and weak hydrogen bonding interactions between the coordinated water molecule on the other monomer with all the phenolic and methoxy oxygen atoms on the other monomer. In addition the two perchlorate anions are linked by hydrogen bonds to the two methanol molecules coordinated to each Mn center. The Mn—O phenolic bond distances range from 1.868 (2) to 1.882 (2) Å while the Mn—N distances range from 1.978 (2) to 1.981 (2) Å. Mn—O distances for the axial water and methanol ligands are longer at 2.226 (2)/2.257 (2) and 2.313 (2)/2.324 (2) Å reflecting the usual Jahn Teller distortion as found in Mn(III) complexes.

Related literature top

For background to the use of manganese–salen compounds as single molecule magnets, see: Mandal et al. (2009); Miyasaka et al. (2007); Yuan et al. (2007). For the use of Mn(III)–salen complexes as catalysts, see: Abashkin & Burt (2004); Chattopadhyay et al. (2007); Katsuki (2000).

Experimental top

The synthesis of the ligand, ethylenebis(3-methoxysalicylaldimine) was achieved by adding a solution of o-vanillin in 40 ml me thanol dropwise using glass pipette to a solution of (2 g, 33.3 mmol) of ethylenediamine in 10 ml me thanol. The mixture was refluxed for 24 h. After solvent evaporation under reduced pressure, yellow solids were obtained.

Synthesis of the complex C38H50Cl2Mn2N4O21 was achieved by adding to a solution of (0.36 g, 1 mmol) of Mn(ClO4)2.6H2O in 5 ml me thanol a solution of (0.33 g, 1 mmol) H2L2 in 3 ml of dichloromethane. The mixture was stirred at room temperature for 1 h. The mixture was then filtered and layered with diethyl ether for crystallization. Crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. Water H atoms were refined isotropically with O—H distance restrained to 0.82 Å and H—O—H angle to 104.5° with [Uiso(H) = 1.5Ueq(O)]. The structure contained disordered water molecules near symmetry elements. These were removed using the SQUEEZE routine in PLATON (Spek, 2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of C38H50Mn2N4O12 hydrogen bonded cation dimer, showing atom labeling. All H atoms except those attached to water are removed for clarity. Hydrogen bonds are shown by dashed lines. Thermal ellipsoids are at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing for C38H50Cl2Mn2N4O21 viewed down the c axis. Hydrogen bonds are shown by dashed lines.
Aqua{6,6'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}methanolmanganese(III)) perchlorate hemihydrate top
Crystal data top
[Mn(C18H18N2O4)(CH4O)(H2O)]ClO4·0.5H2OF(000) = 2232
Mr = 539.80Dx = 1.470 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 7290 reflections
a = 22.7438 (15) Åθ = 4.7–32.7°
b = 13.3986 (9) ŵ = 0.71 mm1
c = 16.3266 (10) ÅT = 115 K
β = 101.324 (7)°Prism, black
V = 4878.4 (5) Å30.55 × 0.35 × 0.31 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
13163 independent reflections
Radiation source: Enhance (Mo) X-ray Source10458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.5081 pixels mm-1θmax = 32.8°, θmin = 4.7°
ω scansh = 2033
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 2019
Tmin = 0.610, Tmax = 1.000l = 2324
19303 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0828P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
13163 reflectionsΔρmax = 0.74 e Å3
631 parametersΔρmin = 0.84 e Å3
55 restraintsAbsolute structure: Flack (1983), 3800 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.254 (13)
Crystal data top
[Mn(C18H18N2O4)(CH4O)(H2O)]ClO4·0.5H2OV = 4878.4 (5) Å3
Mr = 539.80Z = 8
Monoclinic, C2Mo Kα radiation
a = 22.7438 (15) ŵ = 0.71 mm1
b = 13.3986 (9) ÅT = 115 K
c = 16.3266 (10) Å0.55 × 0.35 × 0.31 mm
β = 101.324 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
13163 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
10458 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 1.000Rint = 0.036
19303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127Δρmax = 0.74 e Å3
S = 0.98Δρmin = 0.84 e Å3
13163 reflectionsAbsolute structure: Flack (1983), 3800 Friedel pairs
631 parametersAbsolute structure parameter: 0.254 (13)
55 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.284266 (19)0.22062 (6)0.31977 (3)0.02020 (10)
O1A0.20506 (9)0.20431 (17)0.33561 (13)0.0238 (4)
O2A0.26446 (9)0.19945 (17)0.20359 (12)0.0230 (4)
O3A0.08934 (11)0.2039 (2)0.31066 (19)0.0413 (6)
O4A0.21244 (11)0.16204 (18)0.05267 (13)0.0287 (5)
O1SA0.26218 (9)0.38821 (17)0.29203 (13)0.0246 (4)
H1SA0.28850.41280.26830.030*
O1WA0.30967 (9)0.06162 (17)0.34674 (13)0.0228 (4)
H1W10.2831 (12)0.0331 (15)0.363 (2)0.034*
H1W20.3150 (16)0.0339 (16)0.3049 (15)0.034*
N1A0.31187 (12)0.2484 (2)0.44013 (15)0.0255 (5)
N2A0.36935 (11)0.2478 (2)0.31556 (15)0.0232 (5)
C1A0.18088 (15)0.2407 (2)0.3969 (2)0.0268 (6)
C2A0.11764 (16)0.2419 (3)0.3859 (3)0.0359 (8)
C3A0.02547 (17)0.1982 (4)0.2937 (4)0.0614 (14)
H3AA0.01240.15570.33570.092*
H3AB0.01150.16960.23810.092*
H3AC0.00870.26520.29590.092*
C4A0.08952 (19)0.2788 (3)0.4481 (3)0.0477 (10)
H4AA0.04700.27980.43960.057*
C5A0.1234 (2)0.3140 (4)0.5226 (3)0.0572 (13)
H5AA0.10400.33840.56500.069*
C6A0.1845 (2)0.3138 (3)0.5352 (2)0.0429 (9)
H6AA0.20720.33890.58620.051*
C7A0.21462 (16)0.2769 (2)0.4740 (2)0.0303 (7)
C8A0.27886 (17)0.2726 (2)0.4925 (2)0.0294 (7)
H8AA0.29850.28880.54770.035*
C9A0.37745 (15)0.2394 (3)0.46612 (19)0.0315 (7)
H9AA0.38890.16860.47640.038*
H9AB0.39160.27750.51830.038*
C10A0.40551 (15)0.2815 (3)0.39549 (19)0.0302 (7)
H10C0.40620.35530.39790.036*
H10D0.44730.25740.40120.036*
C11A0.39377 (14)0.2389 (2)0.25053 (19)0.0239 (6)
H11B0.43580.24980.25820.029*
C12A0.36241 (14)0.2138 (2)0.16743 (18)0.0243 (6)
C13A0.39642 (16)0.2077 (3)0.1042 (2)0.0304 (7)
H13A0.43860.21720.11780.037*
C14A0.36904 (17)0.1882 (3)0.0230 (2)0.0336 (7)
H14B0.39200.18550.01960.040*
C15A0.30703 (18)0.1723 (3)0.00364 (19)0.0326 (8)
H15B0.28820.15840.05240.039*
C16A0.27278 (15)0.1765 (2)0.06459 (18)0.0258 (6)
C17A0.18066 (17)0.1551 (3)0.0314 (2)0.0335 (7)
H17A0.18410.21840.06020.050*
H17B0.13830.14090.03200.050*
H17C0.19770.10120.06000.050*
C18A0.30015 (14)0.1966 (2)0.14890 (17)0.0206 (5)
C1SA0.20369 (15)0.4126 (3)0.2451 (2)0.0328 (7)
H1SC0.20470.47910.22040.049*
H1SD0.17470.41210.28230.049*
H1SE0.19180.36330.20060.049*
Mn20.175942 (18)0.06031 (6)0.20590 (2)0.01856 (9)
O1B0.19422 (8)0.04764 (19)0.32295 (12)0.0240 (4)
O2B0.25505 (9)0.03912 (17)0.19454 (12)0.0214 (4)
O3B0.24161 (9)0.01694 (19)0.46979 (12)0.0247 (4)
O4B0.36976 (9)0.03079 (18)0.22170 (13)0.0252 (4)
O1SB0.19546 (10)0.22959 (18)0.21297 (15)0.0295 (5)
H1SB0.16950.26830.22520.035*
O1WB0.14964 (10)0.10166 (17)0.18614 (14)0.0271 (5)
H1W30.1767 (13)0.1277 (16)0.167 (2)0.041*
H1W40.1538 (16)0.1265 (16)0.2332 (13)0.041*
N1B0.09088 (10)0.0906 (2)0.20692 (15)0.0208 (5)
N2B0.14853 (10)0.0746 (2)0.08354 (14)0.0195 (5)
C1B0.15614 (13)0.0289 (2)0.37347 (17)0.0191 (5)
C2B0.18095 (13)0.0050 (2)0.45525 (16)0.0194 (5)
C3B0.27128 (14)0.0354 (3)0.55419 (18)0.0272 (6)
H3BA0.25850.10020.57240.041*
H3BB0.31480.03610.55740.041*
H3BC0.26090.01730.59050.041*
C4B0.14463 (14)0.0239 (2)0.51249 (18)0.0254 (6)
H4BA0.16170.04700.56700.030*
C5B0.08227 (14)0.0086 (3)0.48935 (19)0.0283 (6)
H5BA0.05720.02180.52820.034*
C6B0.05785 (14)0.0251 (3)0.41128 (19)0.0262 (6)
H6BA0.01580.03570.39650.031*
C7B0.09403 (12)0.0446 (2)0.35185 (16)0.0210 (5)
C8B0.06494 (12)0.0778 (2)0.26962 (18)0.0221 (6)
H8BA0.02320.09130.26100.027*
C9B0.05733 (13)0.1273 (3)0.12582 (18)0.0256 (6)
H9BA0.01410.11240.12000.031*
H9BB0.06240.20030.12140.031*
C10B0.08281 (12)0.0736 (3)0.05825 (17)0.0259 (6)
H10A0.07030.10790.00390.031*
H10B0.06800.00400.05230.031*
C11B0.18300 (13)0.0831 (2)0.02926 (17)0.0203 (5)
H11A0.16420.09350.02740.024*
C12B0.24705 (13)0.0780 (2)0.04822 (17)0.0203 (5)
C13B0.27827 (15)0.0926 (3)0.01842 (19)0.0265 (6)
H13B0.25630.10530.07320.032*
C14B0.33933 (15)0.0886 (3)0.0047 (2)0.0321 (7)
H14A0.35970.09830.04960.038*
C15B0.37194 (14)0.0700 (3)0.07584 (19)0.0288 (6)
H15A0.41450.06930.08570.035*
C16B0.34283 (12)0.0528 (2)0.14082 (17)0.0220 (5)
C17B0.43359 (14)0.0242 (3)0.2403 (2)0.0343 (7)
H17D0.45080.08700.22510.051*
H17E0.44730.01180.30010.051*
H17F0.44660.03070.20830.051*
C18B0.27935 (12)0.0572 (2)0.12807 (16)0.0192 (5)
C1SB0.25317 (16)0.2747 (3)0.2351 (2)0.0356 (7)
H2SA0.28320.23120.21790.053*
H2SB0.25280.33940.20690.053*
H2SC0.26320.28460.29570.053*
Cl10.39136 (3)0.51826 (7)0.21382 (4)0.02536 (15)
O110.33111 (11)0.4789 (2)0.18945 (15)0.0389 (6)
O120.38896 (13)0.6234 (2)0.21341 (19)0.0485 (7)
O130.41788 (12)0.4822 (2)0.29518 (15)0.0438 (7)
O140.42573 (13)0.4846 (3)0.15440 (19)0.0575 (9)
Cl20.07547 (4)0.35939 (7)0.29865 (7)0.0554 (3)
O210.13420 (10)0.3178 (3)0.3221 (2)0.0422 (9)0.767 (8)
O220.07724 (17)0.46343 (15)0.3180 (3)0.0489 (11)0.767 (8)
O230.0539 (2)0.3456 (4)0.21119 (14)0.107 (2)0.767 (8)
O240.03594 (15)0.3100 (3)0.3440 (3)0.0821 (18)0.767 (8)
O21B0.1283 (3)0.3092 (9)0.3406 (7)0.0422 (9)0.233 (8)
O22B0.0679 (6)0.4497 (6)0.3420 (8)0.0489 (11)0.233 (8)
O23B0.0813 (7)0.3824 (11)0.2151 (4)0.107 (2)0.233 (8)
O24B0.0246 (4)0.2964 (7)0.2968 (10)0.0821 (18)0.233 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0235 (2)0.0206 (2)0.01571 (18)0.00317 (17)0.00203 (15)0.00269 (17)
O1A0.0259 (10)0.0225 (11)0.0236 (10)0.0017 (9)0.0066 (8)0.0033 (9)
O2A0.0262 (10)0.0238 (11)0.0177 (9)0.0024 (8)0.0008 (7)0.0059 (8)
O3A0.0260 (11)0.0359 (14)0.0597 (17)0.0011 (10)0.0026 (11)0.0045 (13)
O4A0.0384 (12)0.0271 (11)0.0172 (9)0.0029 (10)0.0027 (8)0.0002 (9)
O1SA0.0272 (11)0.0234 (10)0.0238 (10)0.0006 (9)0.0062 (8)0.0005 (9)
O1WA0.0257 (10)0.0239 (10)0.0190 (10)0.0047 (8)0.0045 (8)0.0032 (8)
N1A0.0340 (14)0.0223 (12)0.0188 (11)0.0074 (11)0.0020 (10)0.0003 (10)
N2A0.0252 (12)0.0254 (12)0.0172 (10)0.0043 (10)0.0001 (9)0.0010 (10)
C1A0.0337 (16)0.0189 (14)0.0303 (15)0.0022 (12)0.0125 (12)0.0041 (12)
C2A0.0378 (18)0.0248 (16)0.048 (2)0.0071 (14)0.0169 (15)0.0058 (15)
C3A0.0229 (17)0.057 (3)0.100 (4)0.0107 (18)0.000 (2)0.012 (3)
C4A0.045 (2)0.041 (2)0.065 (3)0.0127 (18)0.030 (2)0.006 (2)
C5A0.081 (3)0.043 (2)0.062 (3)0.008 (2)0.050 (3)0.002 (2)
C6A0.072 (3)0.0278 (16)0.0364 (19)0.0006 (18)0.0280 (18)0.0016 (15)
C7A0.0475 (19)0.0191 (13)0.0274 (15)0.0011 (14)0.0146 (14)0.0020 (13)
C8A0.0503 (19)0.0198 (14)0.0188 (13)0.0080 (14)0.0083 (13)0.0005 (12)
C9A0.0364 (17)0.0347 (18)0.0202 (14)0.0083 (14)0.0019 (12)0.0038 (14)
C10A0.0325 (16)0.0335 (16)0.0219 (14)0.0124 (14)0.0011 (12)0.0043 (13)
C11A0.0240 (13)0.0215 (14)0.0258 (14)0.0002 (11)0.0040 (11)0.0023 (12)
C12A0.0344 (15)0.0161 (12)0.0242 (13)0.0003 (12)0.0099 (11)0.0033 (12)
C13A0.0411 (18)0.0223 (14)0.0304 (15)0.0038 (14)0.0132 (13)0.0022 (13)
C14A0.054 (2)0.0261 (16)0.0248 (15)0.0045 (15)0.0169 (14)0.0035 (13)
C15A0.061 (2)0.0207 (14)0.0153 (13)0.0006 (15)0.0054 (13)0.0005 (12)
C16A0.0434 (17)0.0143 (12)0.0186 (13)0.0001 (12)0.0034 (12)0.0005 (11)
C17A0.051 (2)0.0261 (16)0.0186 (14)0.0049 (15)0.0060 (13)0.0020 (12)
C18A0.0324 (14)0.0127 (12)0.0154 (11)0.0010 (11)0.0011 (10)0.0005 (10)
C1SA0.0329 (16)0.0329 (17)0.0312 (16)0.0044 (14)0.0024 (12)0.0033 (14)
Mn20.01845 (18)0.0221 (2)0.01472 (18)0.00026 (17)0.00234 (13)0.00233 (17)
O1B0.0199 (9)0.0345 (13)0.0179 (9)0.0008 (9)0.0049 (7)0.0054 (9)
O2B0.0218 (9)0.0262 (11)0.0168 (9)0.0032 (8)0.0051 (7)0.0021 (8)
O3B0.0241 (10)0.0340 (12)0.0152 (9)0.0039 (9)0.0019 (7)0.0006 (9)
O4B0.0186 (9)0.0295 (11)0.0263 (10)0.0016 (8)0.0017 (7)0.0007 (9)
O1SB0.0304 (11)0.0217 (11)0.0371 (12)0.0018 (9)0.0087 (9)0.0017 (10)
O1WB0.0296 (11)0.0216 (10)0.0295 (11)0.0024 (9)0.0043 (9)0.0035 (9)
N1B0.0207 (11)0.0223 (11)0.0184 (11)0.0001 (9)0.0013 (8)0.0026 (9)
N2B0.0198 (10)0.0207 (12)0.0167 (10)0.0001 (9)0.0000 (8)0.0008 (9)
C1B0.0236 (13)0.0177 (12)0.0173 (12)0.0036 (10)0.0071 (10)0.0024 (10)
C2B0.0250 (13)0.0201 (13)0.0137 (11)0.0014 (11)0.0050 (9)0.0023 (10)
C3B0.0345 (16)0.0268 (15)0.0182 (13)0.0054 (13)0.0003 (11)0.0024 (12)
C4B0.0369 (16)0.0237 (14)0.0172 (12)0.0030 (13)0.0092 (11)0.0007 (12)
C5B0.0317 (15)0.0334 (16)0.0236 (14)0.0019 (13)0.0148 (11)0.0016 (13)
C6B0.0230 (13)0.0329 (16)0.0242 (13)0.0001 (12)0.0083 (11)0.0019 (13)
C7B0.0225 (12)0.0242 (14)0.0163 (11)0.0011 (11)0.0039 (9)0.0016 (11)
C8B0.0190 (12)0.0232 (15)0.0243 (13)0.0022 (11)0.0047 (10)0.0011 (12)
C9B0.0192 (13)0.0358 (17)0.0206 (13)0.0048 (12)0.0015 (10)0.0087 (13)
C10B0.0207 (12)0.0360 (17)0.0187 (12)0.0003 (13)0.0017 (9)0.0059 (13)
C11B0.0280 (13)0.0168 (12)0.0152 (11)0.0039 (11)0.0020 (10)0.0024 (10)
C12B0.0248 (13)0.0192 (13)0.0175 (11)0.0002 (11)0.0055 (9)0.0000 (11)
C13B0.0355 (16)0.0258 (14)0.0195 (13)0.0021 (13)0.0083 (11)0.0034 (12)
C14B0.0342 (16)0.0383 (18)0.0256 (15)0.0035 (14)0.0107 (12)0.0016 (14)
C15B0.0261 (14)0.0341 (17)0.0272 (14)0.0035 (14)0.0078 (11)0.0022 (14)
C16B0.0238 (12)0.0200 (13)0.0222 (12)0.0009 (12)0.0046 (10)0.0007 (12)
C17B0.0250 (15)0.045 (2)0.0304 (16)0.0016 (14)0.0010 (12)0.0012 (15)
C18B0.0221 (11)0.0149 (11)0.0204 (11)0.0012 (11)0.0036 (9)0.0014 (11)
C1SB0.0391 (17)0.0331 (17)0.0341 (16)0.0072 (15)0.0061 (13)0.0076 (15)
Cl10.0251 (3)0.0284 (3)0.0208 (3)0.0007 (3)0.0000 (2)0.0038 (3)
O110.0317 (12)0.0508 (16)0.0313 (12)0.0159 (11)0.0005 (9)0.0119 (11)
O120.0504 (16)0.0237 (12)0.0629 (18)0.0003 (12)0.0096 (14)0.0024 (13)
O130.0422 (14)0.0570 (17)0.0265 (12)0.0075 (13)0.0074 (10)0.0143 (12)
O140.0433 (15)0.085 (3)0.0461 (16)0.0162 (16)0.0144 (12)0.0123 (16)
Cl20.0366 (5)0.0504 (6)0.0679 (7)0.0131 (4)0.0175 (4)0.0301 (6)
O210.0329 (14)0.063 (2)0.029 (2)0.0123 (14)0.0022 (12)0.0160 (16)
O220.043 (2)0.0374 (18)0.070 (3)0.0021 (15)0.0215 (18)0.0097 (19)
O230.096 (4)0.117 (4)0.078 (3)0.050 (3)0.058 (3)0.057 (3)
O240.0325 (19)0.074 (3)0.125 (5)0.0189 (19)0.019 (2)0.004 (3)
O21B0.0329 (14)0.063 (2)0.029 (2)0.0123 (14)0.0022 (12)0.0160 (16)
O22B0.043 (2)0.0374 (18)0.070 (3)0.0021 (15)0.0215 (18)0.0097 (19)
O23B0.096 (4)0.117 (4)0.078 (3)0.050 (3)0.058 (3)0.057 (3)
O24B0.0325 (19)0.074 (3)0.125 (5)0.0189 (19)0.019 (2)0.004 (3)
Geometric parameters (Å, º) top
Mn1—O1A1.882 (2)O1B—C1B1.332 (3)
Mn1—O2A1.883 (2)O2B—C18B1.333 (3)
Mn1—N1A1.977 (3)O3B—C2B1.363 (3)
Mn1—N2A1.983 (3)O3B—C3B1.432 (3)
Mn1—O1WA2.229 (2)O4B—C16B1.374 (4)
Mn1—O1SA2.326 (2)O4B—C17B1.426 (4)
O1A—C1A1.325 (4)O1SB—C1SB1.426 (4)
O2A—C18A1.320 (4)O1SB—H1SB0.8400
O3A—C2A1.369 (5)O1WB—H1W30.821 (17)
O3A—C3A1.427 (4)O1WB—H1W40.826 (17)
O4A—C16A1.362 (4)N1B—C8B1.289 (4)
O4A—C17A1.424 (4)N1B—C9B1.476 (4)
O1SA—C1SA1.437 (4)N2B—C11B1.298 (3)
O1SA—H1SA0.8400N2B—C10B1.470 (3)
O1WA—H1W10.802 (17)C1B—C7B1.403 (4)
O1WA—H1W20.807 (17)C1B—C2B1.418 (4)
N1A—C8A1.285 (4)C2B—C4B1.386 (4)
N1A—C9A1.473 (4)C3B—H3BA0.9800
N2A—C11A1.297 (4)C3B—H3BB0.9800
N2A—C10A1.470 (4)C3B—H3BC0.9800
C1A—C2A1.414 (5)C4B—C5B1.409 (4)
C1A—C7A1.425 (5)C4B—H4BA0.9500
C2A—C4A1.393 (5)C5B—C6B1.363 (4)
C3A—H3AA0.9800C5B—H5BA0.9500
C3A—H3AB0.9800C6B—C7B1.414 (4)
C3A—H3AC0.9800C6B—H6BA0.9500
C4A—C5A1.389 (7)C7B—C8B1.445 (4)
C4A—H4AA0.9500C8B—H8BA0.9500
C5A—C6A1.364 (6)C9B—C10B1.524 (4)
C5A—H5AA0.9500C9B—H9BA0.9900
C6A—C7A1.408 (5)C9B—H9BB0.9900
C6A—H6AA0.9500C10B—H10A0.9900
C7A—C8A1.434 (5)C10B—H10B0.9900
C8A—H8AA0.9500C11B—C12B1.430 (4)
C9A—C10A1.531 (5)C11B—H11A0.9500
C9A—H9AA0.9900C12B—C18B1.393 (4)
C9A—H9AB0.9900C12B—C13B1.425 (4)
C10A—H10C0.9900C13B—C14B1.364 (5)
C10A—H10D0.9900C13B—H13B0.9500
C11A—C12A1.443 (4)C14B—C15B1.399 (5)
C11A—H11B0.9500C14B—H14A0.9500
C12A—C18A1.407 (4)C15B—C16B1.376 (4)
C12A—C13A1.409 (4)C15B—H15A0.9500
C13A—C14A1.375 (5)C16B—C18B1.419 (4)
C13A—H13A0.9500C17B—H17D0.9800
C14A—C15A1.400 (5)C17B—H17E0.9800
C14A—H14B0.9500C17B—H17F0.9800
C15A—C16A1.380 (5)C1SB—H2SA0.9800
C15A—H15B0.9500C1SB—H2SB0.9800
C16A—C18A1.421 (4)C1SB—H2SC0.9800
C17A—H17A0.9800Cl1—O121.410 (3)
C17A—H17B0.9800Cl1—O131.431 (2)
C17A—H17C0.9800Cl1—O141.433 (3)
C1SA—H1SC0.9800Cl1—O111.449 (2)
C1SA—H1SD0.9800Cl2—O231.4279 (19)
C1SA—H1SE0.9800Cl2—O221.4281 (19)
Mn2—O2B1.866 (2)Cl2—O211.4284 (19)
Mn2—O1B1.8819 (19)Cl2—O24B1.429 (2)
Mn2—N1B1.980 (2)Cl2—O22B1.4291 (19)
Mn2—N2B1.982 (2)Cl2—O21B1.4299 (19)
Mn2—O1WB2.257 (2)Cl2—O23B1.4303 (19)
Mn2—O1SB2.310 (2)Cl2—O241.4339 (19)
O1A—Mn1—O2A94.29 (9)C2B—O3B—C3B117.2 (2)
O1A—Mn1—N1A90.63 (10)C16B—O4B—C17B117.4 (2)
O2A—Mn1—N1A174.83 (10)C1SB—O1SB—Mn2126.0 (2)
O1A—Mn1—N2A173.05 (10)C1SB—O1SB—H1SB109.5
O2A—Mn1—N2A91.99 (10)Mn2—O1SB—H1SB118.8
N1A—Mn1—N2A83.01 (11)Mn2—O1WB—H1W3105.4 (17)
O1A—Mn1—O1WA94.57 (9)Mn2—O1WB—H1W4106.0 (17)
O2A—Mn1—O1WA93.24 (9)H1W3—O1WB—H1W4103 (2)
N1A—Mn1—O1WA87.93 (10)C8B—N1B—C9B121.3 (2)
N2A—Mn1—O1WA88.02 (9)C8B—N1B—Mn2125.4 (2)
O1A—Mn1—O1SA87.88 (9)C9B—N1B—Mn2113.24 (18)
O2A—Mn1—O1SA87.11 (9)C11B—N2B—C10B121.7 (2)
N1A—Mn1—O1SA91.51 (10)C11B—N2B—Mn2125.72 (19)
N2A—Mn1—O1SA89.48 (9)C10B—N2B—Mn2112.54 (17)
O1WA—Mn1—O1SA177.49 (8)O1B—C1B—C7B124.1 (3)
C1A—O1A—Mn1127.7 (2)O1B—C1B—C2B117.2 (2)
C18A—O2A—Mn1128.94 (19)C7B—C1B—C2B118.7 (2)
C2A—O3A—C3A118.4 (3)O3B—C2B—C4B125.3 (2)
C16A—O4A—C17A117.0 (3)O3B—C2B—C1B113.8 (2)
C1SA—O1SA—Mn1117.75 (19)C4B—C2B—C1B120.9 (3)
C1SA—O1SA—H1SA109.5O3B—C3B—H3BA109.5
Mn1—O1SA—H1SA108.8O3B—C3B—H3BB109.5
Mn1—O1WA—H1W1109.7 (17)H3BA—C3B—H3BB109.5
Mn1—O1WA—H1W2110.4 (17)O3B—C3B—H3BC109.5
H1W1—O1WA—H1W2108 (3)H3BA—C3B—H3BC109.5
C8A—N1A—C9A121.3 (3)H3BB—C3B—H3BC109.5
C8A—N1A—Mn1126.5 (2)C2B—C4B—C5B119.6 (3)
C9A—N1A—Mn1112.1 (2)C2B—C4B—H4BA120.2
C11A—N2A—C10A120.0 (3)C5B—C4B—H4BA120.2
C11A—N2A—Mn1126.1 (2)C6B—C5B—C4B120.2 (3)
C10A—N2A—Mn1113.9 (2)C6B—C5B—H5BA119.9
O1A—C1A—C2A118.1 (3)C4B—C5B—H5BA119.9
O1A—C1A—C7A124.1 (3)C5B—C6B—C7B121.1 (3)
C2A—C1A—C7A117.7 (3)C5B—C6B—H6BA119.4
O3A—C2A—C4A125.8 (3)C7B—C6B—H6BA119.4
O3A—C2A—C1A113.3 (3)C1B—C7B—C6B119.5 (3)
C4A—C2A—C1A120.9 (4)C1B—C7B—C8B122.3 (2)
O3A—C3A—H3AA109.5C6B—C7B—C8B118.2 (3)
O3A—C3A—H3AB109.5N1B—C8B—C7B125.5 (3)
H3AA—C3A—H3AB109.5N1B—C8B—H8BA117.2
O3A—C3A—H3AC109.5C7B—C8B—H8BA117.2
H3AA—C3A—H3AC109.5N1B—C9B—C10B106.8 (2)
H3AB—C3A—H3AC109.5N1B—C9B—H9BA110.4
C5A—C4A—C2A120.2 (4)C10B—C9B—H9BA110.4
C5A—C4A—H4AA119.9N1B—C9B—H9BB110.4
C2A—C4A—H4AA119.9C10B—C9B—H9BB110.4
C6A—C5A—C4A120.4 (4)H9BA—C9B—H9BB108.6
C6A—C5A—H5AA119.8N2B—C10B—C9B107.6 (2)
C4A—C5A—H5AA119.8N2B—C10B—H10A110.2
C5A—C6A—C7A121.1 (4)C9B—C10B—H10A110.2
C5A—C6A—H6AA119.5N2B—C10B—H10B110.2
C7A—C6A—H6AA119.5C9B—C10B—H10B110.2
C6A—C7A—C1A119.7 (3)H10A—C10B—H10B108.5
C6A—C7A—C8A118.8 (3)N2B—C11B—C12B125.0 (2)
C1A—C7A—C8A121.5 (3)N2B—C11B—H11A117.5
N1A—C8A—C7A125.1 (3)C12B—C11B—H11A117.5
N1A—C8A—H8AA117.5C18B—C12B—C13B119.4 (3)
C7A—C8A—H8AA117.5C18B—C12B—C11B122.7 (2)
N1A—C9A—C10A107.5 (3)C13B—C12B—C11B117.9 (3)
N1A—C9A—H9AA110.2C14B—C13B—C12B120.9 (3)
C10A—C9A—H9AA110.2C14B—C13B—H13B119.6
N1A—C9A—H9AB110.2C12B—C13B—H13B119.6
C10A—C9A—H9AB110.2C13B—C14B—C15B119.8 (3)
H9AA—C9A—H9AB108.5C13B—C14B—H14A120.1
N2A—C10A—C9A108.2 (3)C15B—C14B—H14A120.1
N2A—C10A—H10C110.1C16B—C15B—C14B120.5 (3)
C9A—C10A—H10C110.1C16B—C15B—H15A119.7
N2A—C10A—H10D110.1C14B—C15B—H15A119.7
C9A—C10A—H10D110.1O4B—C16B—C15B125.8 (3)
H10C—C10A—H10D108.4O4B—C16B—C18B113.5 (2)
N2A—C11A—C12A125.4 (3)C15B—C16B—C18B120.7 (3)
N2A—C11A—H11B117.3O4B—C17B—H17D109.5
C12A—C11A—H11B117.3O4B—C17B—H17E109.5
C18A—C12A—C13A120.5 (3)H17D—C17B—H17E109.5
C18A—C12A—C11A122.1 (3)O4B—C17B—H17F109.5
C13A—C12A—C11A117.5 (3)H17D—C17B—H17F109.5
C14A—C13A—C12A120.5 (3)H17E—C17B—H17F109.5
C14A—C13A—H13A119.7O2B—C18B—C12B124.8 (2)
C12A—C13A—H13A119.7O2B—C18B—C16B116.5 (2)
C13A—C14A—C15A119.5 (3)C12B—C18B—C16B118.7 (2)
C13A—C14A—H14B120.3O1SB—C1SB—H2SA109.5
C15A—C14A—H14B120.3O1SB—C1SB—H2SB109.5
C16A—C15A—C14A121.2 (3)H2SA—C1SB—H2SB109.5
C16A—C15A—H15B119.4O1SB—C1SB—H2SC109.5
C14A—C15A—H15B119.4H2SA—C1SB—H2SC109.5
O4A—C16A—C15A125.9 (3)H2SB—C1SB—H2SC109.5
O4A—C16A—C18A113.8 (3)O12—Cl1—O13110.55 (18)
C15A—C16A—C18A120.3 (3)O12—Cl1—O14109.7 (2)
O4A—C17A—H17A109.5O13—Cl1—O14109.61 (19)
O4A—C17A—H17B109.5O12—Cl1—O11109.18 (17)
H17A—C17A—H17B109.5O13—Cl1—O11109.59 (15)
O4A—C17A—H17C109.5O14—Cl1—O11108.18 (18)
H17A—C17A—H17C109.5O23—Cl2—O22109.67 (8)
H17B—C17A—H17C109.5O23—Cl2—O21109.75 (8)
O2A—C18A—C12A125.2 (3)O22—Cl2—O21109.70 (8)
O2A—C18A—C16A116.7 (3)O23—Cl2—O24B77.5 (5)
C12A—C18A—C16A118.1 (3)O22—Cl2—O24B124.7 (6)
O1SA—C1SA—H1SC109.5O21—Cl2—O24B119.1 (6)
O1SA—C1SA—H1SD109.5O23—Cl2—O22B123.6 (7)
H1SC—C1SA—H1SD109.5O22—Cl2—O22B20.8 (5)
O1SA—C1SA—H1SE109.5O21—Cl2—O22B113.3 (7)
H1SC—C1SA—H1SE109.5O24B—Cl2—O22B109.56 (9)
H1SD—C1SA—H1SE109.5O23—Cl2—O21B120.7 (6)
O2B—Mn2—O1B93.56 (8)O22—Cl2—O21B111.6 (7)
O2B—Mn2—N1B174.04 (10)O21—Cl2—O21B14.9 (5)
O1B—Mn2—N1B91.80 (9)O24B—Cl2—O21B109.50 (9)
O2B—Mn2—N2B91.90 (9)O22B—Cl2—O21B109.48 (9)
O1B—Mn2—N2B174.52 (9)O23—Cl2—O23B32.0 (5)
N1B—Mn2—N2B82.77 (10)O22—Cl2—O23B89.8 (6)
O2B—Mn2—O1WB94.19 (9)O21—Cl2—O23B94.8 (5)
O1B—Mn2—O1WB93.32 (10)O24B—Cl2—O23B109.46 (9)
N1B—Mn2—O1WB88.08 (9)O22B—Cl2—O23B109.43 (9)
N2B—Mn2—O1WB85.80 (9)O21B—Cl2—O23B109.38 (9)
O2B—Mn2—O1SB88.56 (9)O23—Cl2—O24109.22 (8)
O1B—Mn2—O1SB92.06 (10)O22—Cl2—O24109.25 (8)
N1B—Mn2—O1SB88.66 (9)O21—Cl2—O24109.23 (8)
N2B—Mn2—O1SB88.56 (10)O24B—Cl2—O2431.8 (5)
O1WB—Mn2—O1SB173.80 (9)O22B—Cl2—O2489.2 (5)
C1B—O1B—Mn2127.23 (18)O21B—Cl2—O2495.1 (5)
C18B—O2B—Mn2127.95 (17)O23B—Cl2—O24141.0 (5)
O2A—Mn1—O1A—C1A155.3 (2)O2B—Mn2—O1B—C1B161.1 (3)
N1A—Mn1—O1A—C1A23.1 (3)N1B—Mn2—O1B—C1B21.5 (3)
N2A—Mn1—O1A—C1A0.7 (10)N2B—Mn2—O1B—C1B13.8 (13)
O1WA—Mn1—O1A—C1A111.1 (3)O1WB—Mn2—O1B—C1B66.7 (3)
O1SA—Mn1—O1A—C1A68.4 (3)O1SB—Mn2—O1B—C1B110.2 (3)
O1A—Mn1—O2A—C18A177.5 (2)O1B—Mn2—O2B—C18B165.1 (2)
N1A—Mn1—O2A—C18A20.3 (13)N1B—Mn2—O2B—C18B11.0 (11)
N2A—Mn1—O2A—C18A5.5 (2)N2B—Mn2—O2B—C18B15.4 (2)
O1WA—Mn1—O2A—C18A82.7 (2)O1WB—Mn2—O2B—C18B101.3 (2)
O1SA—Mn1—O2A—C18A94.8 (2)O1SB—Mn2—O2B—C18B73.1 (2)
O1A—Mn1—O1SA—C1SA38.3 (2)O2B—Mn2—O1SB—C1SB21.5 (2)
O2A—Mn1—O1SA—C1SA56.1 (2)O1B—Mn2—O1SB—C1SB72.0 (2)
N1A—Mn1—O1SA—C1SA128.9 (2)N1B—Mn2—O1SB—C1SB163.8 (2)
N2A—Mn1—O1SA—C1SA148.1 (2)N2B—Mn2—O1SB—C1SB113.4 (2)
O1WA—Mn1—O1SA—C1SA154.0 (17)O1WB—Mn2—O1SB—C1SB137.9 (7)
O1A—Mn1—N1A—C8A16.9 (3)O2B—Mn2—N1B—C8B167.7 (9)
O2A—Mn1—N1A—C8A145.3 (11)O1B—Mn2—N1B—C8B13.5 (3)
N2A—Mn1—N1A—C8A160.3 (3)N2B—Mn2—N1B—C8B165.7 (3)
O1WA—Mn1—N1A—C8A111.5 (3)O1WB—Mn2—N1B—C8B79.7 (3)
O1SA—Mn1—N1A—C8A71.0 (3)O1SB—Mn2—N1B—C8B105.5 (3)
O1A—Mn1—N1A—C9A163.7 (2)O2B—Mn2—N1B—C9B14.5 (11)
O2A—Mn1—N1A—C9A34.0 (13)O1B—Mn2—N1B—C9B168.7 (2)
N2A—Mn1—N1A—C9A19.1 (2)N2B—Mn2—N1B—C9B12.1 (2)
O1WA—Mn1—N1A—C9A69.2 (2)O1WB—Mn2—N1B—C9B98.1 (2)
O1SA—Mn1—N1A—C9A108.4 (2)O1SB—Mn2—N1B—C9B76.7 (2)
O1A—Mn1—N2A—C11A160.9 (8)O2B—Mn2—N2B—C11B10.8 (3)
O2A—Mn1—N2A—C11A6.1 (3)O1B—Mn2—N2B—C11B174.2 (10)
N1A—Mn1—N2A—C11A175.2 (3)N1B—Mn2—N2B—C11B166.5 (3)
O1WA—Mn1—N2A—C11A87.0 (3)O1WB—Mn2—N2B—C11B104.9 (3)
O1SA—Mn1—N2A—C11A93.2 (3)O1SB—Mn2—N2B—C11B77.7 (3)
O1A—Mn1—N2A—C10A18.7 (10)O2B—Mn2—N2B—C10B168.5 (2)
O2A—Mn1—N2A—C10A173.5 (2)O1B—Mn2—N2B—C10B6.5 (12)
N1A—Mn1—N2A—C10A5.2 (2)N1B—Mn2—N2B—C10B14.2 (2)
O1WA—Mn1—N2A—C10A93.4 (2)O1WB—Mn2—N2B—C10B74.4 (2)
O1SA—Mn1—N2A—C10A86.4 (2)O1SB—Mn2—N2B—C10B103.0 (2)
Mn1—O1A—C1A—C2A163.8 (2)Mn2—O1B—C1B—C7B20.1 (4)
Mn1—O1A—C1A—C7A17.6 (4)Mn2—O1B—C1B—C2B162.7 (2)
C3A—O3A—C2A—C4A1.9 (6)C3B—O3B—C2B—C4B10.2 (4)
C3A—O3A—C2A—C1A177.9 (3)C3B—O3B—C2B—C1B170.3 (3)
O1A—C1A—C2A—O3A0.1 (4)O1B—C1B—C2B—O3B2.1 (4)
C7A—C1A—C2A—O3A178.8 (3)C7B—C1B—C2B—O3B179.5 (3)
O1A—C1A—C2A—C4A179.7 (3)O1B—C1B—C2B—C4B178.4 (3)
C7A—C1A—C2A—C4A1.0 (5)C7B—C1B—C2B—C4B1.0 (4)
O3A—C2A—C4A—C5A179.0 (4)O3B—C2B—C4B—C5B179.9 (3)
C1A—C2A—C4A—C5A0.8 (6)C1B—C2B—C4B—C5B0.4 (5)
C2A—C4A—C5A—C6A0.7 (7)C2B—C4B—C5B—C6B0.4 (5)
C4A—C5A—C6A—C7A0.8 (6)C4B—C5B—C6B—C7B0.6 (5)
C5A—C6A—C7A—C1A1.1 (6)O1B—C1B—C7B—C6B178.0 (3)
C5A—C6A—C7A—C8A176.1 (4)C2B—C1B—C7B—C6B0.8 (4)
O1A—C1A—C7A—C6A179.8 (3)O1B—C1B—C7B—C8B3.6 (5)
C2A—C1A—C7A—C6A1.1 (5)C2B—C1B—C7B—C8B179.2 (3)
O1A—C1A—C7A—C8A2.6 (5)C5B—C6B—C7B—C1B0.1 (5)
C2A—C1A—C7A—C8A176.0 (3)C5B—C6B—C7B—C8B178.5 (3)
C9A—N1A—C8A—C7A175.9 (3)C9B—N1B—C8B—C7B178.5 (3)
Mn1—N1A—C8A—C7A4.8 (5)Mn2—N1B—C8B—C7B3.9 (4)
C6A—C7A—C8A—N1A174.0 (3)C1B—C7B—C8B—N1B4.4 (5)
C1A—C7A—C8A—N1A8.8 (5)C6B—C7B—C8B—N1B174.0 (3)
C8A—N1A—C9A—C10A141.3 (3)C8B—N1B—C9B—C10B143.8 (3)
Mn1—N1A—C9A—C10A38.1 (3)Mn2—N1B—C9B—C10B34.1 (3)
C11A—N2A—C10A—C9A153.4 (3)C11B—N2B—C10B—C9B144.5 (3)
Mn1—N2A—C10A—C9A26.9 (3)Mn2—N2B—C10B—C9B36.1 (3)
N1A—C9A—C10A—N2A41.0 (4)N1B—C9B—C10B—N2B44.2 (3)
C10A—N2A—C11A—C12A175.2 (3)C10B—N2B—C11B—C12B175.6 (3)
Mn1—N2A—C11A—C12A4.4 (5)Mn2—N2B—C11B—C12B3.7 (4)
N2A—C11A—C12A—C18A0.4 (5)N2B—C11B—C12B—C18B3.9 (5)
N2A—C11A—C12A—C13A179.8 (3)N2B—C11B—C12B—C13B177.7 (3)
C18A—C12A—C13A—C14A2.1 (5)C18B—C12B—C13B—C14B1.4 (5)
C11A—C12A—C13A—C14A177.3 (3)C11B—C12B—C13B—C14B179.9 (3)
C12A—C13A—C14A—C15A1.3 (5)C12B—C13B—C14B—C15B0.1 (5)
C13A—C14A—C15A—C16A0.4 (5)C13B—C14B—C15B—C16B2.0 (5)
C17A—O4A—C16A—C15A8.9 (4)C17B—O4B—C16B—C15B0.5 (5)
C17A—O4A—C16A—C18A171.6 (3)C17B—O4B—C16B—C18B179.7 (3)
C14A—C15A—C16A—O4A179.8 (3)C14B—C15B—C16B—O4B177.8 (3)
C14A—C15A—C16A—C18A0.4 (5)C14B—C15B—C16B—C18B2.4 (5)
Mn1—O2A—C18A—C12A2.9 (4)Mn2—O2B—C18B—C12B13.1 (4)
Mn1—O2A—C18A—C16A178.4 (2)Mn2—O2B—C18B—C16B168.1 (2)
C13A—C12A—C18A—O2A179.2 (3)C13B—C12B—C18B—O2B177.8 (3)
C11A—C12A—C18A—O2A1.4 (5)C11B—C12B—C18B—O2B0.7 (5)
C13A—C12A—C18A—C16A2.0 (4)C13B—C12B—C18B—C16B1.0 (4)
C11A—C12A—C18A—C16A177.4 (3)C11B—C12B—C18B—C16B179.4 (3)
O4A—C16A—C18A—O2A0.5 (4)O4B—C16B—C18B—O2B0.5 (4)
C15A—C16A—C18A—O2A180.0 (3)C15B—C16B—C18B—O2B179.7 (3)
O4A—C16A—C18A—C12A179.3 (3)O4B—C16B—C18B—C12B179.3 (3)
C15A—C16A—C18A—C12A1.2 (4)C15B—C16B—C18B—C12B0.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1SA—H1SA···O110.841.972.788 (3)165
O1WA—H1W1···O3B0.80 (2)2.15 (2)2.830 (3)142 (3)
O1WA—H1W1···O1B0.80 (2)2.27 (3)2.964 (3)145 (3)
O1WA—H1W2···O4B0.81 (2)2.19 (2)2.944 (3)155 (3)
O1WA—H1W2···O2B0.81 (2)2.26 (3)2.886 (3)135 (3)
O1SB—H1SB···O210.842.022.737 (4)143
O1SB—H1SB···O21B0.842.333.010 (13)139
O1SB—H1SB···O23B0.842.503.312 (13)163
O1WB—H1W3···O4A0.82 (2)2.23 (2)2.944 (3)146 (3)
O1WB—H1W3···O2A0.82 (2)2.19 (3)2.885 (3)143 (3)
O1WB—H1W4···O1A0.83 (2)2.12 (3)2.868 (3)151 (3)
O1WB—H1W4···O3A0.83 (2)2.36 (2)2.997 (4)135 (3)

Experimental details

Crystal data
Chemical formula[Mn(C18H18N2O4)(CH4O)(H2O)]ClO4·0.5H2O
Mr539.80
Crystal system, space groupMonoclinic, C2
Temperature (K)115
a, b, c (Å)22.7438 (15), 13.3986 (9), 16.3266 (10)
β (°) 101.324 (7)
V3)4878.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.55 × 0.35 × 0.31
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.610, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19303, 13163, 10458
Rint0.036
(sin θ/λ)max1)0.762
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 0.98
No. of reflections13163
No. of parameters631
No. of restraints55
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.84
Absolute structureFlack (1983), 3800 Friedel pairs
Absolute structure parameter0.254 (13)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1SA—H1SA···O110.841.972.788 (3)164.6
O1WA—H1W1···O3B0.802 (17)2.15 (2)2.830 (3)142 (3)
O1WA—H1W1···O1B0.802 (17)2.27 (3)2.964 (3)145 (3)
O1WA—H1W2···O4B0.807 (17)2.194 (19)2.944 (3)155 (3)
O1WA—H1W2···O2B0.807 (17)2.26 (3)2.886 (3)135 (3)
O1SB—H1SB···O210.842.022.737 (4)142.7
O1SB—H1SB···O21B0.842.333.010 (13)138.7
O1SB—H1SB···O23B0.842.503.312 (13)162.7
O1WB—H1W3···O4A0.821 (17)2.23 (2)2.944 (3)146 (3)
O1WB—H1W3···O2A0.821 (17)2.19 (3)2.885 (3)143 (3)
O1WB—H1W4···O1A0.826 (17)2.12 (3)2.868 (3)151 (3)
O1WB—H1W4···O3A0.826 (17)2.36 (2)2.997 (4)135 (3)
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAbashkin, Y. G. & Burt, S. K. (2004). J. Phys. Chem. B, 108, 2708–2711.  Web of Science CrossRef CAS Google Scholar
First citationChattopadhyay, T., Islam, S., Nethaji, M., Majee, A. & Das, D. (2007). J. Mol. Catal. A, 267, 255–264.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKatsuki, T. (2000). Peroxide Chem. pp. 303–319.  Google Scholar
First citationMandal, S., Rosair, G., Ribas, J. & Bandyopadhyay, D. (2009). Inorg. Chim. Acta, 362, 2200–2204.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiyasaka, H., Saitoh, A. & Abe, S. (2007). Coord. Chem. Rev. 251, 2622–2664.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO, CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, M., Zhao, F., Zhang, W., Pan, F., Wang, Z.-M. & Gao, S. (2007). Chem. Eur. J. 13, 2937–2952.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m851-m852
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds