organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1746-o1747

(Z)-Ethyl 2-oxo-3-(1,2-di­hydroquinolin-2-yl­­idene)propano­ate

aDepartment of Chemistry, University of Jyväskylä, PO Box 35, FIN-40014 Jyväskylä, Finland, and bDepartment of Chemistry, University of Technology and Life Sciences, Seminaryjna 3, PL-85-326 Bydgoszcz, Poland
*Correspondence e-mail: arto.m.valkonen@jyu.fi

(Received 9 June 2010; accepted 16 June 2010; online 23 June 2010)

Both independent mol­ecules in the asymmetric unit of the tautomeric title compound, C14H13NO3, a synthetic product obtained from 2-lithio­methyl­quinoline and diethyl oxalate, crystallize in the enaminone form with a Z configuration around the double bond. Intra­molecular N—H⋯O hydrogen bonds occur, generating an S(6) graph-set motif. In the crystal, weak inter­molecular C—H⋯O and ππ stacking inter­actions [centroid–centroid distances = 3.7020 (14)–3.7429 (13)Å] define a three-dimensional supra­molecular network.

Related literature

The enaminone form is predominant in the crystalline state for 2-substituted quinolines, see: Kolehmainen et al. (2000[Kolehmainen, E., Ośmiałowski, B., Krygowski, T. M., Kauppinen, R., Nissinen, M. & Gawinecki, R. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1259-1266.]); Loghmani-Khouzani et al. (2006[Loghmani-Khouzani, H., Ośmiałowski, B., Gawinecki, R., Kolehmainen, E., Harrington, R. W. & Clegg, W. (2006). J. Iran. Chem. Soc. 3, 173-179.]). The enaminone form has been found to be the only tautomeric form present in a chloro­form solution, see: More O'Ferrall & Murray (1994[More O'Ferrall, R. A. & Murray, B. A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2461-2470.]); Greenhill (1990[Greenhill, J. V. (1990). The Chemistry of Heterocyclic Compounds, Quinolines, Part 3, edited by G. Jones, pp. 247-248. Chichester: Wiley.]). For the synthesis, see: Kolehmainen et al. (2000[Kolehmainen, E., Ośmiałowski, B., Krygowski, T. M., Kauppinen, R., Nissinen, M. & Gawinecki, R. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1259-1266.]); Ośmiałowski et al. (2002[Ośmiałowski, B., Kolehmainen, E., Nissinen, M., Krygowski, T. M. & Gawinecki, R. (2002). J. Org. Chem. 67, 3339-3345.], 2003[Ośmiałowski, B., Kolehmainen, E. & Gawinecki, R. (2003). Chem. Eur. J. 9, 2710-2716.]). For its melting point, see: Stock et al. (1958[Stock, A. M., Donahue, W. E. & Amstutz, E. D. (1958). J. Org. Chem. 23, 1840-1848.]); Leonard & Boyer (1950[Leonard, N. J. & Boyer, J. H. (1950). J. Am. Chem. Soc. 72, 2980-2985.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ππ stacking inter­actions, see: Meyer et al. (2003[Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210-1250.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO3

  • Mr = 243.25

  • Monoclinic, P 21 /n

  • a = 7.8367 (3) Å

  • b = 11.9726 (6) Å

  • c = 25.3156 (13) Å

  • β = 99.019 (3)°

  • V = 2345.89 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • 12368 measured reflections

  • 4210 independent reflections

  • 2528 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.124

  • S = 1.01

  • 4210 reflections

  • 331 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O12 0.92 (2) 1.78 (2) 2.582 (2) 144 (2)
N1A—H1A⋯O12A 0.91 (2) 1.87 (2) 2.633 (2) 141 (2)
C7—H7⋯O13A 0.95 2.50 3.203 (3) 131
C8—H8⋯O12A 0.95 2.51 3.456 (3) 172
C8A—H8A⋯O12 0.95 2.52 3.412 (3) 156
C16A—H16D⋯O13i 0.98 2.46 3.379 (3) 156
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Bruker, 2002[Bruker (2002). COLLECT. Bruker AXS, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Comment top

In 2-subtituted quinolines, in which the substituent contains a carbonyl group at the β-position, the enaminone form is predominant in the crystalline state, particularily at temperatures far below 0 °C (Kolehmainen et al., 2000; Loghmani-Khouzani et al., 2006). The title compound, (I), C14H13NO3, (Fig. 1) exhibits similar behavior. Early studies were not able to determine whether the enaminone, form (I, Fig. 2) or enol,form ((Z)-ethyl 2-hydroxy-3-(quinolin-2-yl) acrylate (II)), was pesent in a methanol solution (Stock et al., 1958). However, the enaminone form (I) has been found to be the only tautomeric form present in a chloroform solution (More O'Ferrall & Murray, 1994; Greenhill, 1990). Since the enol form, (Z)-ethyl 2-hydroxy-3-(pyridin-2-yl)acrylate (III), was the only tautomer detected in the chloroform solution of a pyridinyl derivative (More O'Ferrall & Murray, 1994), this suggests that benzo-annulation may be responsible for the higher stability of the enaminone form (I) over the enol form (II).

In the title compound, (I), the (Z)-configuration around double bond is observed in each of the two independent molecules in the asymmetric unit (Fig. 1) with only small deviations in the side chain dihedral angles. Intramolecular N—H···O hydrogen bonds (Table 1), generating an S(6) graph set motif (Bernstein et al., 1995) are observed resulting from a (Z) configuration around C2C11. The double-bonded O atoms are located on the same side of the C—C bond between carbonyl groups (s-cis conformation). Bond distances and angles are in normal ranges (Allen et al., 1987). In addition, weak intermolecular C—H···O interactions (Table 1) as well as ππ stacking interactions with reasonable closest C···C distances (about 3.4 Å, Meyer et al., 2003) are found and contribute to crystal structure stabilization.

Related literature top

The enaminone form is predominant in the crystalline state for 2-substituted quinolines, see: Kolehmainen et al. (2000); Loghmani-Khouzani et al. (2006). The enaminone form has been found to be the only tautomeric form present in a chloroform solution, see: More O'Ferrall & Murray (1994); Greenhill (1990). For the synthesis, see: Kolehmainen et al. (2000); Ośmiałowski et al. (2002, 2003). For its melting point, see: Stock et al. (1958); Leonard & Boyer (1950). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ππ stacking interactions, see: Meyer et al. (2003). For bond-length data, see: Allen et al. (1987).

Experimental top

(Z)-Ethyl 2-oxo-3-(quinolin-2(1H)-ylidene)propanoate was obtained from equimolar starting quantities of 2-lithiomethylquinoline and diethyl oxalate following procedures described (Kolehmainen et al., 2000; Ośmiałowski et al., 2002; Ośmiałowski et al., 2003). The product melts at 132–134 °C (EtOH) [lit. mp 130.8–131.6 °C (Stock et al., 1958); 132 °C (Leonard & Boyer, 1950)]. Suitable single crystals for X-ray diffraction were obtained by very slow evaporation of analytical sample from NMR-tube, where CDCl3 was used as a solvent.

Refinement top

All H atoms were visible in electron density maps, but those bonded to C were calculated at their idealized positions and allowed to ride on their parent atoms at C—H distances of 0.95 Å (aromatic), 0.98 Å (methyl) and 0.99 Å (methylene), with Uiso(H) of 1.2 times Ueq(C) (or 1.5 times Ueq(C) for methyls). The N—H protons were found in the electron density map and were fixed in place by DFIX restraint (s = 0.02) at distances of 0.91 Å from N atoms, and Uiso(H) values of 1.2 times Ueq(N) were used.

Computing details top

Data collection: COLLECT (Bruker, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. Chemical formula and structural diagrams for (Z)-Ethyl 2-oxo-3-(quinolin-2(1H)-ylidene)propanoate (I), (Z)-ethyl 2-hydroxy-3-(quinolin-2-yl)acrylate (II) and (Z)-ethyl 2-hydroxy-3-(pyridin-2-yl)acrylate (III).
[Figure 3] Fig. 3. Packing diagram of the title compound showing the non-covalent N—H···O and C—H···O interactions.
(Z)-Ethyl 2-oxo-3-(1,2-dihydroquinolin-2-ylidene)propanoate top
Crystal data top
C14H13NO3F(000) = 1024
Mr = 243.25Dx = 1.378 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6418 reflections
a = 7.8367 (3) Åθ = 0.4–26.0°
b = 11.9726 (6) ŵ = 0.10 mm1
c = 25.3156 (13) ÅT = 173 K
β = 99.019 (3)°Block, orange
V = 2345.89 (19) Å30.15 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2528 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
Graphite monochromatorθmax = 25.3°, θmin = 2.4°
Detector resolution: 9 pixels mm-1h = 89
ϕ and ω scansk = 1414
12368 measured reflectionsl = 2830
4210 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.2151P]
where P = (Fo2 + 2Fc2)/3
4210 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H13NO3V = 2345.89 (19) Å3
Mr = 243.25Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.8367 (3) ŵ = 0.10 mm1
b = 11.9726 (6) ÅT = 173 K
c = 25.3156 (13) Å0.15 × 0.15 × 0.10 mm
β = 99.019 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2528 reflections with I > 2σ(I)
12368 measured reflectionsRint = 0.084
4210 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.19 e Å3
4210 reflectionsΔρmin = 0.20 e Å3
331 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O120.48192 (19)0.58816 (12)0.21420 (6)0.0317 (4)
O130.3793 (2)0.59651 (14)0.10532 (7)0.0421 (5)
O140.32200 (19)0.77845 (12)0.11502 (6)0.0312 (4)
N10.6755 (2)0.68740 (15)0.29211 (8)0.0258 (5)
H10.614 (3)0.6287 (15)0.2746 (9)0.031*
C20.6575 (3)0.78169 (18)0.26243 (9)0.0249 (5)
C30.7474 (3)0.87881 (18)0.28434 (9)0.0269 (5)
H30.73780.94650.26450.032*
C40.8464 (3)0.87531 (18)0.33324 (9)0.0287 (6)
H40.90370.94100.34760.034*
C50.9698 (3)0.76496 (19)0.41398 (9)0.0292 (6)
H51.03060.82850.42960.035*
C60.9840 (3)0.6654 (2)0.44071 (10)0.0337 (6)
H61.05580.65980.47450.040*
C70.8932 (3)0.57168 (19)0.41838 (10)0.0335 (6)
H70.90260.50320.43760.040*
C80.7908 (3)0.57718 (19)0.36916 (9)0.0293 (6)
H80.72980.51320.35420.035*
C90.7778 (3)0.67895 (18)0.34137 (9)0.0239 (5)
C100.8656 (3)0.77435 (18)0.36343 (9)0.0239 (5)
C110.5546 (3)0.77913 (18)0.21150 (9)0.0268 (6)
H110.53800.84600.19110.032*
C120.4772 (3)0.68116 (19)0.19047 (9)0.0268 (5)
C130.3875 (3)0.67949 (19)0.13238 (9)0.0274 (6)
C150.2399 (3)0.7798 (2)0.05944 (9)0.0368 (6)
H15A0.14820.72230.05330.044*
H15B0.32600.76390.03570.044*
C160.1634 (3)0.8941 (2)0.04784 (11)0.0440 (7)
H16A0.10690.89770.01050.066*
H16B0.25520.95040.05400.066*
H16C0.07810.90890.07150.066*
O12A0.53371 (19)0.35331 (12)0.32136 (6)0.0321 (4)
O13A0.7560 (2)0.31949 (14)0.41590 (7)0.0503 (5)
O14A0.67498 (19)0.14041 (13)0.41249 (6)0.0329 (4)
N1A0.3651 (2)0.25757 (16)0.23504 (7)0.0252 (5)
H1A0.408 (3)0.3175 (15)0.2546 (8)0.030*
C2A0.4166 (3)0.15861 (18)0.25803 (9)0.0244 (5)
C3A0.3623 (3)0.05969 (18)0.22881 (9)0.0280 (5)
H3A0.39910.01110.24330.034*
C4A0.2594 (3)0.06522 (19)0.18088 (9)0.0291 (6)
H4A0.22330.00180.16230.035*
C5A0.0960 (3)0.1818 (2)0.10830 (9)0.0302 (6)
H5A0.05520.11700.08860.036*
C6A0.0484 (3)0.2854 (2)0.08803 (10)0.0325 (6)
H6A0.02770.29200.05500.039*
C7A0.1120 (3)0.38156 (19)0.11605 (9)0.0320 (6)
H7A0.08120.45320.10140.038*
C8A0.2188 (3)0.37321 (18)0.16452 (9)0.0288 (6)
H8A0.26260.43850.18320.035*
C9A0.2620 (3)0.26763 (18)0.18590 (9)0.0237 (5)
C10A0.2041 (3)0.17018 (18)0.15768 (9)0.0242 (5)
C11A0.5169 (3)0.15734 (19)0.30907 (9)0.0269 (5)
H11A0.55090.08730.32500.032*
C12A0.5685 (3)0.25474 (18)0.33731 (9)0.0261 (5)
C13A0.6777 (3)0.24376 (19)0.39235 (10)0.0292 (6)
C15A0.7745 (3)0.12443 (19)0.46547 (9)0.0333 (6)
H15C0.73260.17530.49150.040*
H15D0.89810.14040.46490.040*
C16A0.7511 (3)0.0051 (2)0.48090 (10)0.0416 (7)
H16D0.81660.00880.51660.062*
H16E0.79330.04440.45490.062*
H16F0.62830.00960.48130.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O120.0432 (10)0.0213 (9)0.0289 (10)0.0031 (7)0.0007 (7)0.0004 (8)
O130.0670 (12)0.0272 (10)0.0301 (11)0.0047 (8)0.0012 (9)0.0086 (8)
O140.0386 (9)0.0263 (9)0.0260 (10)0.0032 (7)0.0032 (7)0.0021 (7)
N10.0286 (10)0.0194 (11)0.0290 (12)0.0041 (8)0.0038 (9)0.0044 (9)
C20.0268 (12)0.0195 (13)0.0299 (14)0.0006 (9)0.0093 (10)0.0025 (10)
C30.0329 (13)0.0161 (12)0.0322 (14)0.0017 (10)0.0062 (10)0.0007 (10)
C40.0324 (13)0.0216 (13)0.0326 (15)0.0031 (10)0.0065 (11)0.0062 (11)
C50.0315 (13)0.0269 (14)0.0288 (14)0.0041 (10)0.0038 (10)0.0068 (11)
C60.0376 (14)0.0344 (15)0.0283 (15)0.0009 (11)0.0026 (11)0.0000 (12)
C70.0410 (14)0.0273 (14)0.0329 (15)0.0010 (11)0.0083 (11)0.0051 (12)
C80.0325 (13)0.0245 (13)0.0315 (15)0.0015 (10)0.0072 (10)0.0025 (11)
C90.0247 (11)0.0244 (13)0.0236 (13)0.0011 (9)0.0066 (9)0.0026 (11)
C100.0238 (11)0.0233 (13)0.0257 (14)0.0013 (9)0.0075 (10)0.0021 (10)
C110.0321 (12)0.0201 (13)0.0278 (14)0.0014 (10)0.0032 (10)0.0007 (10)
C120.0284 (12)0.0249 (14)0.0278 (14)0.0024 (10)0.0065 (10)0.0018 (11)
C130.0315 (13)0.0228 (13)0.0285 (14)0.0000 (10)0.0063 (10)0.0011 (11)
C150.0466 (15)0.0375 (15)0.0237 (14)0.0065 (12)0.0019 (11)0.0029 (12)
C160.0548 (17)0.0366 (16)0.0371 (16)0.0038 (13)0.0035 (13)0.0012 (13)
O12A0.0420 (9)0.0223 (9)0.0301 (10)0.0008 (7)0.0001 (7)0.0032 (8)
O13A0.0767 (13)0.0298 (10)0.0369 (12)0.0185 (9)0.0147 (10)0.0029 (9)
O14A0.0446 (10)0.0260 (10)0.0241 (10)0.0024 (7)0.0072 (7)0.0031 (7)
N1A0.0299 (11)0.0231 (11)0.0218 (11)0.0021 (8)0.0019 (8)0.0017 (9)
C2A0.0285 (12)0.0220 (13)0.0237 (13)0.0001 (10)0.0080 (10)0.0012 (10)
C3A0.0379 (13)0.0195 (13)0.0274 (14)0.0002 (10)0.0081 (10)0.0001 (11)
C4A0.0352 (13)0.0238 (13)0.0287 (14)0.0055 (10)0.0061 (10)0.0044 (11)
C5A0.0281 (12)0.0332 (15)0.0285 (14)0.0037 (10)0.0024 (10)0.0057 (11)
C6A0.0313 (13)0.0353 (15)0.0285 (14)0.0024 (11)0.0026 (10)0.0032 (12)
C7A0.0378 (14)0.0252 (14)0.0314 (15)0.0054 (11)0.0001 (11)0.0033 (11)
C8A0.0333 (13)0.0233 (13)0.0287 (14)0.0008 (10)0.0015 (10)0.0036 (11)
C9A0.0224 (12)0.0252 (13)0.0241 (13)0.0009 (9)0.0056 (9)0.0015 (10)
C10A0.0229 (11)0.0244 (13)0.0260 (14)0.0023 (9)0.0061 (10)0.0034 (10)
C11A0.0364 (13)0.0207 (13)0.0232 (13)0.0005 (10)0.0032 (10)0.0018 (10)
C12A0.0308 (13)0.0231 (13)0.0243 (13)0.0001 (10)0.0040 (10)0.0013 (11)
C13A0.0385 (14)0.0225 (13)0.0268 (14)0.0017 (11)0.0054 (10)0.0029 (11)
C15A0.0407 (14)0.0339 (15)0.0217 (14)0.0022 (11)0.0062 (10)0.0025 (11)
C16A0.0559 (17)0.0354 (15)0.0291 (15)0.0009 (12)0.0065 (12)0.0053 (12)
Geometric parameters (Å, º) top
O12—C121.263 (3)O12A—C12A1.263 (3)
O13—C131.203 (3)O13A—C13A1.199 (3)
O14—C131.338 (3)O14A—C13A1.340 (3)
O14—C151.453 (3)O14A—C15A1.454 (2)
N1—C21.351 (3)N1A—C2A1.353 (3)
N1—C91.376 (3)N1A—C9A1.378 (3)
N1—H10.924 (15)N1A—H1A0.905 (15)
C2—C111.410 (3)C2A—C11A1.403 (3)
C2—C31.426 (3)C2A—C3A1.426 (3)
C3—C41.355 (3)C3A—C4A1.349 (3)
C3—H30.9500C3A—H3A0.9500
C4—C101.425 (3)C4A—C10A1.426 (3)
C4—H40.9500C4A—H4A0.9500
C5—C61.367 (3)C5A—C6A1.371 (3)
C5—C101.410 (3)C5A—C10A1.403 (3)
C5—H50.9500C5A—H5A0.9500
C6—C71.400 (3)C6A—C7A1.403 (3)
C6—H60.9500C6A—H6A0.9500
C7—C81.374 (3)C7A—C8A1.376 (3)
C7—H70.9500C7A—H7A0.9500
C8—C91.403 (3)C8A—C9A1.396 (3)
C8—H80.9500C8A—H8A0.9500
C9—C101.403 (3)C9A—C10A1.406 (3)
C11—C121.388 (3)C11A—C12A1.394 (3)
C11—H110.9500C11A—H11A0.9500
C12—C131.528 (3)C12A—C13A1.523 (3)
C15—C161.505 (3)C15A—C16A1.500 (3)
C15—H15A0.9900C15A—H15C0.9900
C15—H15B0.9900C15A—H15D0.9900
C16—H16A0.9800C16A—H16D0.9800
C16—H16B0.9800C16A—H16E0.9800
C16—H16C0.9800C16A—H16F0.9800
C13—O14—C15114.65 (17)C13A—O14A—C15A115.73 (17)
C2—N1—C9124.10 (19)C2A—N1A—C9A123.90 (19)
C2—N1—H1111.6 (14)C2A—N1A—H1A113.6 (14)
C9—N1—H1124.3 (14)C9A—N1A—H1A122.5 (14)
N1—C2—C11119.05 (19)N1A—C2A—C11A119.5 (2)
N1—C2—C3117.6 (2)N1A—C2A—C3A117.3 (2)
C11—C2—C3123.4 (2)C11A—C2A—C3A123.2 (2)
C4—C3—C2120.5 (2)C4A—C3A—C2A120.9 (2)
C4—C3—H3119.8C4A—C3A—H3A119.5
C2—C3—H3119.8C2A—C3A—H3A119.5
C3—C4—C10120.9 (2)C3A—C4A—C10A120.9 (2)
C3—C4—H4119.6C3A—C4A—H4A119.5
C10—C4—H4119.6C10A—C4A—H4A119.5
C6—C5—C10120.6 (2)C6A—C5A—C10A121.0 (2)
C6—C5—H5119.7C6A—C5A—H5A119.5
C10—C5—H5119.7C10A—C5A—H5A119.5
C5—C6—C7120.2 (2)C5A—C6A—C7A119.9 (2)
C5—C6—H6119.9C5A—C6A—H6A120.0
C7—C6—H6119.9C7A—C6A—H6A120.0
C8—C7—C6121.0 (2)C8A—C7A—C6A120.7 (2)
C8—C7—H7119.5C8A—C7A—H7A119.7
C6—C7—H7119.5C6A—C7A—H7A119.7
C7—C8—C9118.9 (2)C7A—C8A—C9A119.2 (2)
C7—C8—H8120.6C7A—C8A—H8A120.4
C9—C8—H8120.6C9A—C8A—H8A120.4
N1—C9—C8120.3 (2)N1A—C9A—C8A120.1 (2)
N1—C9—C10118.7 (2)N1A—C9A—C10A118.89 (19)
C8—C9—C10121.0 (2)C8A—C9A—C10A121.0 (2)
C9—C10—C5118.3 (2)C5A—C10A—C9A118.2 (2)
C9—C10—C4118.2 (2)C5A—C10A—C4A123.8 (2)
C5—C10—C4123.5 (2)C9A—C10A—C4A117.98 (19)
C12—C11—C2121.5 (2)C12A—C11A—C2A122.6 (2)
C12—C11—H11119.3C12A—C11A—H11A118.7
C2—C11—H11119.3C2A—C11A—H11A118.7
O12—C12—C11125.8 (2)O12A—C12A—C11A125.9 (2)
O12—C12—C13114.90 (19)O12A—C12A—C13A115.81 (19)
C11—C12—C13119.2 (2)C11A—C12A—C13A118.2 (2)
O13—C13—O14124.1 (2)O13A—C13A—O14A123.1 (2)
O13—C13—C12122.3 (2)O13A—C13A—C12A124.1 (2)
O14—C13—C12113.55 (19)O14A—C13A—C12A112.81 (18)
O14—C15—C16107.56 (19)O14A—C15A—C16A107.21 (18)
O14—C15—H15A110.2O14A—C15A—H15C110.3
C16—C15—H15A110.2C16A—C15A—H15C110.3
O14—C15—H15B110.2O14A—C15A—H15D110.3
C16—C15—H15B110.2C16A—C15A—H15D110.3
H15A—C15—H15B108.5H15C—C15A—H15D108.5
C15—C16—H16A109.5C15A—C16A—H16D109.5
C15—C16—H16B109.5C15A—C16A—H16E109.5
H16A—C16—H16B109.5H16D—C16A—H16E109.5
C15—C16—H16C109.5C15A—C16A—H16F109.5
H16A—C16—H16C109.5H16D—C16A—H16F109.5
H16B—C16—H16C109.5H16E—C16A—H16F109.5
C9—N1—C2—C11177.4 (2)C9A—N1A—C2A—C11A177.9 (2)
C9—N1—C2—C31.5 (3)C9A—N1A—C2A—C3A1.0 (3)
N1—C2—C3—C40.2 (3)N1A—C2A—C3A—C4A1.9 (3)
C11—C2—C3—C4179.0 (2)C11A—C2A—C3A—C4A177.0 (2)
C2—C3—C4—C101.2 (4)C2A—C3A—C4A—C10A1.0 (3)
C10—C5—C6—C70.8 (4)C10A—C5A—C6A—C7A1.9 (4)
C5—C6—C7—C81.0 (4)C5A—C6A—C7A—C8A1.6 (4)
C6—C7—C8—C90.2 (4)C6A—C7A—C8A—C9A0.6 (4)
C2—N1—C9—C8179.1 (2)C2A—N1A—C9A—C8A178.3 (2)
C2—N1—C9—C102.0 (3)C2A—N1A—C9A—C10A0.8 (3)
C7—C8—C9—N1179.7 (2)C7A—C8A—C9A—N1A178.3 (2)
C7—C8—C9—C100.8 (3)C7A—C8A—C9A—C10A2.7 (3)
N1—C9—C10—C5179.9 (2)C6A—C5A—C10A—C9A0.1 (3)
C8—C9—C10—C51.0 (3)C6A—C5A—C10A—C4A179.6 (2)
N1—C9—C10—C40.9 (3)N1A—C9A—C10A—C5A178.5 (2)
C8—C9—C10—C4179.7 (2)C8A—C9A—C10A—C5A2.4 (3)
C6—C5—C10—C90.2 (3)N1A—C9A—C10A—C4A1.7 (3)
C6—C5—C10—C4179.4 (2)C8A—C9A—C10A—C4A177.3 (2)
C3—C4—C10—C90.7 (3)C3A—C4A—C10A—C5A179.4 (2)
C3—C4—C10—C5178.6 (2)C3A—C4A—C10A—C9A0.9 (3)
N1—C2—C11—C122.5 (3)N1A—C2A—C11A—C12A0.9 (3)
C3—C2—C11—C12176.3 (2)C3A—C2A—C11A—C12A179.7 (2)
C2—C11—C12—O123.6 (4)C2A—C11A—C12A—O12A0.2 (4)
C2—C11—C12—C13171.9 (2)C2A—C11A—C12A—C13A179.8 (2)
C15—O14—C13—O130.9 (3)C15A—O14A—C13A—O13A0.2 (3)
C15—O14—C13—C12178.48 (19)C15A—O14A—C13A—C12A179.0 (2)
O12—C12—C13—O1326.2 (3)O12A—C12A—C13A—O13A14.1 (4)
C11—C12—C13—O13149.7 (2)C11A—C12A—C13A—O13A165.5 (2)
O12—C12—C13—O14154.39 (19)O12A—C12A—C13A—O14A164.6 (2)
C11—C12—C13—O1429.7 (3)C11A—C12A—C13A—O14A15.7 (3)
C13—O14—C15—C16176.16 (19)C13A—O14A—C15A—C16A178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O120.92 (2)1.78 (2)2.582 (2)144 (2)
N1A—H1A···O12A0.91 (2)1.87 (2)2.633 (2)141 (2)
C7—H7···O13A0.952.503.203 (3)131
C8—H8···O12A0.952.513.456 (3)172
C8A—H8A···O120.952.523.412 (3)156
C16A—H16D···O13i0.982.463.379 (3)156
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO3
Mr243.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.8367 (3), 11.9726 (6), 25.3156 (13)
β (°) 99.019 (3)
V3)2345.89 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12368, 4210, 2528
Rint0.084
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.124, 1.01
No. of reflections4210
No. of parameters331
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: COLLECT (Bruker, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O120.924 (15)1.776 (18)2.582 (2)144 (2)
N1A—H1A···O12A0.905 (15)1.870 (18)2.633 (2)140.6 (19)
C7—H7···O13A0.952.503.203 (3)130.6
C8—H8···O12A0.952.513.456 (3)171.8
C8A—H8A···O120.952.523.412 (3)156.3
C16A—H16D···O13i0.982.463.379 (3)156.2
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Academy Professor Kari Rissanen and the Academy of Finland (project No. 212588) are thanked for financial support to AV.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). COLLECT. Bruker AXS, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGreenhill, J. V. (1990). The Chemistry of Heterocyclic Compounds, Quinolines, Part 3, edited by G. Jones, pp. 247–248. Chichester: Wiley.  Google Scholar
First citationKolehmainen, E., Ośmiałowski, B., Krygowski, T. M., Kauppinen, R., Nissinen, M. & Gawinecki, R. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1259–1266.  CSD CrossRef Google Scholar
First citationLeonard, N. J. & Boyer, J. H. (1950). J. Am. Chem. Soc. 72, 2980–2985.  CrossRef CAS Web of Science Google Scholar
First citationLoghmani-Khouzani, H., Ośmiałowski, B., Gawinecki, R., Kolehmainen, E., Harrington, R. W. & Clegg, W. (2006). J. Iran. Chem. Soc. 3, 173–179.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210–1250.  Web of Science CrossRef CAS Google Scholar
First citationMore O'Ferrall, R. A. & Murray, B. A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2461–2470.  Google Scholar
First citationOśmiałowski, B., Kolehmainen, E. & Gawinecki, R. (2003). Chem. Eur. J. 9, 2710–2716.  PubMed Google Scholar
First citationOśmiałowski, B., Kolehmainen, E., Nissinen, M., Krygowski, T. M. & Gawinecki, R. (2002). J. Org. Chem. 67, 3339–3345.  Web of Science PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStock, A. M., Donahue, W. E. & Amstutz, E. D. (1958). J. Org. Chem. 23, 1840–1848.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1746-o1747
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds