organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl­anilinium nitrate

aDepartment of Chemistry, University of Pretoria, Pretoria 0002, South Africa
*Correspondence e-mail: melanie.rademeyer@up.ac.za

(Received 28 April 2010; accepted 31 May 2010; online 16 June 2010)

In the title compound, C7H10N+·NO3, the 3-methyl­anilinium cations inter­act with the nitrate anions through strong bifurcated N+—H⋯(O,O) hydrogen bonds, forming a two-dimensional hydrogen-bonded network.

Related literature

For related structures, see: Benali-Cherif et al. (2007[Benali-Cherif, N., Kateb, A., Boussekine, H., Boutobba, Z. & Messai, A. (2007). Acta Cryst. E63, o3251.], 2009[Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·NO3

  • Mr = 170.17

  • Orthorhombic, P b c a

  • a = 10.6599 (14) Å

  • b = 9.7800 (13) Å

  • c = 16.401 (2) Å

  • V = 1709.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.40 × 0.32 × 0.05 mm

Data collection
  • Bruker (Siemens) P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.988

  • 8520 measured reflections

  • 1659 independent reflections

  • 1211 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.135

  • S = 1.06

  • 1659 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 2.05 2.943 (2) 178
N1—H1A⋯O2i 0.89 2.51 3.130 (2) 127
N1—H1B⋯O3ii 0.89 2.15 3.0221 (19) 167
N1—H1B⋯O2ii 0.89 2.37 3.078 (2) 136
N1—H1C⋯O3iii 0.89 2.01 2.879 (2) 166
N1—H1C⋯O1iii 0.89 2.47 3.176 (2) 137
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A fundamental understanding of the role of oxyanion geometry on molecular packing and non-covalent interactions in salt crystal structures is central to the fields of both molecular recognition and crystal engineering. The crystal structure of the title compound was determined as part of a project focusing on the role of anions when combined with alkylammonium or arylammonium cations. The structures of the related compounds p-toluidinium nitrate (Benali-Cherif et al., 2009) and o-toluidinium nitrate (Benali-Cherif et al., 2007) have been reported in the literature.

The molecular geometry and labelling scheme of the title compound is illustrated in Fig. 1. The asymmetric unit contains one 3-methylanilinium cation and one trigonal planar nitrate anion. A layered structure consisting of alternating organic and inorganic layers is exhibited by the title compound. The organic layers contain the hydrophobic part of the cation, while the inorganic layers comprise the ammonium groups and nitrate anions. The molecular packing of the title compound, viewed down the b-axis, is illustrated in Fig 2(a). In the organic layer pairs of cations alternate in orientation, with all the aromatic groups packing in a single row. Aromatic interactions are present between pairs of parallel cations, packing in a head-to-tail, offset π-stacking fashion, with a centroid-to-centroid distance of 3.6347 (12) Å. Neighbouring parallel cation pairs pack with aromatic planes at an angle of 57 °. The ammonium groups of pairs of parallel cations point to pairs of nitrate anions, interacting through strong, charge assisted N+—H···O- hydrogen bonds, listed in Table 1. Each ammonium group is hydrogen bonded to three different nitrate anions through three bifurcated hydrogen bonds to six different oxygen atoms, as illustrated in Fig. 2(b). In each bifurcated hydrogen bond, one of the interactions displays an N+—H···O- interaction angle closer to 180 °, while the angle of the second interaction deviates significantly more from linearity. In addition, for each bifurcated interaction, the two N+—H···O- angles and the -O—HO- angle add up to approximately 360°. Each nitrate anion accepts three bifurcated hydrogen bonds from three different ammonium groups. The oxygen atom, O3, which accepts two approximately linear hydrogen bonds, exhibits a shorter N—O bond distance compared to the other N—O bonds.

The hydrogen bonding interactions result in a two-dimensional hydrogen bonded sheet, parallel to the ab-plane, as illustrated in Fig. 2(b). Two types of hydrogen bonded rings are present in the sheet. The larger of the two can be described by the graph set notation R36(12), while the smaller ring is described by R21(4) (Bernstein et al., 1995).

Related literature top

For related structures, see: Benali-Cherif et al. (2007, 2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

3-Methylanilinium nitrate was prepared by the dropwise addition of excess concentrated nitric acid (0.90 ml, 70%, Saarchem) to a solution of m-toluidine (0.50 ml, 99%, Aldrich) in 20 ml chloroform (99%, Saarchem). Slow evaporation of the chloroform solution at room temperature gave colourless crystals.

Refinement top

All H atoms were refined using a riding model (HFIX 33 for N1 and C7), with C—H distances either 0.93 or 0.96 Å and N—H distances of 0.89 Å, and Uiso(H) = 1.5Ueq(C) or 1.2Ueq(C) or 1.2Ueq(N). The highest residual peak was 0.95 Å from atom H7B.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. (a) Packing diagram of the title compound viewed down the b-axis.(b) N—H···O hydrogen bonding network in the title compound (dashed lines indicate hydrogen bonds).
3-Methylanilinium nitrate top
Crystal data top
C7H10N+·NO3F(000) = 720
Mr = 170.17Dx = 1.322 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3320 reflections
a = 10.6599 (14) Åθ = 2.5–26.0°
b = 9.7800 (13) ŵ = 0.11 mm1
c = 16.401 (2) ÅT = 293 K
V = 1709.9 (4) Å3Plate, colourless
Z = 80.40 × 0.32 × 0.05 mm
Data collection top
Bruker (Siemens) P4
diffractometer
1659 independent reflections
Radiation source: fine-focus sealed tube1211 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 137
Tmin = 0.968, Tmax = 0.988k = 911
8520 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.2901P]
where P = (Fo2 + 2Fc2)/3
1659 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C7H10N+·NO3V = 1709.9 (4) Å3
Mr = 170.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.6599 (14) ŵ = 0.11 mm1
b = 9.7800 (13) ÅT = 293 K
c = 16.401 (2) Å0.40 × 0.32 × 0.05 mm
Data collection top
Bruker (Siemens) P4
diffractometer
1659 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1211 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.988Rint = 0.032
8520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
1659 reflectionsΔρmin = 0.14 e Å3
111 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.86066 (14)0.20637 (15)0.24233 (8)0.0590 (4)
C40.62873 (17)0.1314 (2)0.08553 (12)0.0704 (5)
H40.63240.13460.14210.084*
O20.95202 (13)0.13478 (15)0.22538 (9)0.0824 (5)
C20.67695 (17)0.01475 (19)0.03889 (11)0.0659 (5)
H20.71160.05930.06650.079*
C60.57062 (16)0.23133 (16)0.04117 (10)0.0573 (4)
H60.53440.30180.07110.069*
C50.57263 (16)0.23767 (18)0.04363 (11)0.0619 (5)
C30.67905 (19)0.0215 (2)0.04542 (12)0.0774 (6)
H30.71500.04940.07510.093*
C70.5124 (3)0.3551 (2)0.08774 (13)0.0914 (7)
H7A0.42330.34130.08990.137*
H7B0.53030.43870.05940.137*
H7C0.54520.36030.14220.137*
O30.77282 (13)0.15739 (14)0.28406 (8)0.0733 (4)
O10.85544 (14)0.32743 (14)0.22016 (8)0.0765 (4)
N10.61546 (14)0.11602 (14)0.17012 (8)0.0608 (4)
H1A0.53760.13500.18620.091*
H1B0.63660.03280.18720.091*
H1C0.66810.17720.19110.091*
C10.62205 (14)0.12107 (16)0.08055 (10)0.0516 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0751 (10)0.0567 (8)0.0453 (7)0.0010 (7)0.0051 (7)0.0024 (6)
C40.0682 (12)0.0909 (14)0.0520 (10)0.0142 (10)0.0053 (8)0.0093 (9)
O20.0812 (10)0.0760 (9)0.0899 (11)0.0165 (7)0.0129 (7)0.0099 (7)
C20.0653 (11)0.0612 (10)0.0712 (11)0.0056 (8)0.0008 (9)0.0071 (9)
C60.0678 (10)0.0511 (9)0.0531 (10)0.0049 (8)0.0013 (7)0.0044 (7)
C50.0663 (11)0.0669 (11)0.0524 (10)0.0152 (9)0.0062 (8)0.0010 (8)
C30.0746 (12)0.0840 (14)0.0735 (12)0.0043 (10)0.0102 (10)0.0241 (11)
C70.1199 (18)0.0888 (14)0.0655 (12)0.0031 (13)0.0233 (12)0.0117 (11)
O30.0808 (9)0.0699 (8)0.0692 (8)0.0048 (7)0.0138 (7)0.0074 (6)
O10.0983 (10)0.0568 (8)0.0746 (9)0.0046 (7)0.0019 (7)0.0138 (6)
N10.0742 (10)0.0545 (8)0.0537 (8)0.0009 (7)0.0008 (7)0.0042 (6)
C10.0550 (9)0.0499 (9)0.0501 (9)0.0075 (7)0.0011 (7)0.0005 (7)
Geometric parameters (Å, º) top
N2—O21.2312 (19)C6—H60.9300
N2—O11.2398 (19)C5—C71.501 (3)
N2—O31.2550 (18)C3—H30.9300
C4—C31.370 (3)C7—H7A0.9600
C4—C51.382 (3)C7—H7B0.9600
C4—H40.9300C7—H7C0.9600
C2—C11.375 (2)N1—C11.472 (2)
C2—C31.385 (3)N1—H1A0.8900
C2—H20.9300N1—H1B0.8900
C6—C11.371 (2)N1—H1C0.8900
C6—C51.392 (2)
O2—N2—O1120.82 (16)C2—C3—H3119.7
O2—N2—O3119.76 (15)C5—C7—H7A109.5
O1—N2—O3119.40 (16)C5—C7—H7B109.5
C3—C4—C5121.40 (18)H7A—C7—H7B109.5
C3—C4—H4119.3C5—C7—H7C109.5
C5—C4—H4119.3H7A—C7—H7C109.5
C1—C2—C3117.87 (17)H7B—C7—H7C109.5
C1—C2—H2121.1C1—N1—H1A109.5
C3—C2—H2121.1C1—N1—H1B109.5
C1—C6—C5119.96 (16)H1A—N1—H1B109.5
C1—C6—H6120.0C1—N1—H1C109.5
C5—C6—H6120.0H1A—N1—H1C109.5
C4—C5—C6118.03 (17)H1B—N1—H1C109.5
C4—C5—C7121.37 (18)C6—C1—C2122.05 (16)
C6—C5—C7120.59 (17)C6—C1—N1118.52 (14)
C4—C3—C2120.68 (18)C2—C1—N1119.41 (15)
C4—C3—H3119.7
C3—C4—C5—C61.2 (3)C1—C2—C3—C40.5 (3)
C3—C4—C5—C7177.24 (19)C5—C6—C1—C20.2 (2)
C1—C6—C5—C40.8 (2)C5—C6—C1—N1178.47 (14)
C1—C6—C5—C7177.68 (17)C3—C2—C1—C60.1 (3)
C5—C4—C3—C21.1 (3)C3—C2—C1—N1178.60 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.052.943 (2)178
N1—H1A···O2i0.892.513.130 (2)127
N1—H1B···O3ii0.892.153.0221 (19)167
N1—H1B···O2ii0.892.373.078 (2)136
N1—H1C···O3iii0.892.012.879 (2)166
N1—H1C···O1iii0.892.473.176 (2)137
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y, z1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H10N+·NO3
Mr170.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.6599 (14), 9.7800 (13), 16.401 (2)
V3)1709.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.32 × 0.05
Data collection
DiffractometerBruker (Siemens) P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.968, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
8520, 1659, 1211
Rint0.032
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.135, 1.06
No. of reflections1659
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.052.943 (2)177.6
N1—H1A···O2i0.892.513.130 (2)126.9
N1—H1B···O3ii0.892.153.0221 (19)167.2
N1—H1B···O2ii0.892.373.078 (2)136.1
N1—H1C···O3iii0.892.012.879 (2)166.3
N1—H1C···O1iii0.892.473.176 (2)136.5
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y, z1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

Funding received for this work from the University of Pretoria and the National Research Foundation (GUN: 2054350) is acknowledged.

References

First citationBenali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBenali-Cherif, N., Kateb, A., Boussekine, H., Boutobba, Z. & Messai, A. (2007). Acta Cryst. E63, o3251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds