organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-methyl­sulfonyl-2-nitro­benzoate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hljusunzhizhong@163.com

(Received 8 May 2010; accepted 8 June 2010; online 16 June 2010)

The title compound, C9H9NO6S, was prepared by the reaction of methanol and thionyl chloride with 4-methyl­sulfonyl-2-nitro­benzoic acid under mild conditions. The dihedral angle between the nitro group and benzene ring is 21.33 (19)° and that between the carboxyl­ate group and the benzene ring is 72.09 (17)°. The crystal structure is stabilized by weak inter­molecular bifurcated C—H⋯O inter­actions occurring in the (100) plane.

Related literature

For general background to the synthesis and properties of 4-methyl­sulfonyl-2-nitro-benzoic acid methyl ester, see: Carter et al. (1991[Carter, C. G., Lee, D. L., Michaely, W. J. & Kraatz, G. W. (1991). US Patent No. 5 006 158.]). For the biological activity of 4-methyl­sulfonyl-2-nitro-benzoic acid methyl ester derivatives, see: Kopsell et al. (2009[Kopsell, D. A., Armel, G. R., Mueller, T. C. & Sams, C. E. (2009). J. Agric. Food Chem. 57, 6362-6368.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9NO6S

  • Mr = 259.23

  • Monoclinic, P 21 /c

  • a = 9.0108 (12) Å

  • b = 8.7671 (11) Å

  • c = 14.4761 (19) Å

  • β = 98.955 (2)°

  • V = 1129.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 273 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.948

  • 9661 measured reflections

  • 2783 independent reflections

  • 2042 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.05

  • 2783 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.54 3.370 (2) 148
C6—H6⋯O3ii 0.93 2.59 3.216 (2) 125
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

4-methylsulfonyl-2-nitro-benzoic acid methyl ester is used for preparation of mesotrione, which inhibits a critical enzyme, phytoene desaturase, in plant carotenoidbiosynthesis (Kopsell et al., 2009).

The structure of the title compound is shown in Fig. 1. The dihedral angle between the nitro group and benzene ring is 21.33 (19)°. The dihedral angle between the carboxyl group and benzene ring is 72.09 (17)°. The crystal structure is stabilized by weak intermolecular bifurcated C—H···O interactions (the sum of the angles involving H6 as the central atom is 360 (3)°) occurring in the (100) plane (Table 1), resulting in a two-dimensional network (Fig. 2).

Related literature top

For general background to the synthesis and properties of 4-methylsulfonyl-2-nitro-benzoic acid methyl ester, see: Carter et al. (1991). For the biological activity of 4-methylsulfonyl-2-nitro-benzoic acid methyl ester derivatives, see: Kopsell et al. (2009).

Experimental top

Thionyl chloride (250 mmol) was added to a solution of 4-methylsulfonyl-2-nitro-benzoic acid (50 mmol) in anhydrous toluene (250 ml). After stirring the reaction mixture for 10 h at room temperature, the solvent was removed and methanol (100 ml) was added. The reaction mixture was further stirred for 3 h at 323 K. The resulting oil was washed with water (100 ml). After separation from the water phase, the product was concentrated under reduced pressure and the residue was recrystallized from methanol to give the title compound in a yield of 80% (Carter et al., 1991). Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from ethanol at room temperature in a yield of 60%. Analysis found: C 41.7, H 3.4, N 5.3%; C9H9NO6S requires: C 41.7, H 3.5, N 5.4%.

Refinement top

All H atoms were placed in idealized positions [C—H = 0.96 (methyl) and 0.93 Å(aromatic)] and included in the refinement in the riding-model approximation, with Uiso(H)= 1.5 Ueq(methyl C) and 1.2 Ueq(aromatic C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of packing of the crystal structure of the title compound, viewed down the b direction. Dashed lines indicate hydrogen bonds.
Methyl 4-methylsulfonyl-2-nitrobenzoate top
Crystal data top
C9H9NO6SF(000) = 536
Mr = 259.23Dx = 1.524 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2311 reflections
a = 9.0108 (12) Åθ = 2.9–25.0°
b = 8.7671 (11) ŵ = 0.30 mm1
c = 14.4761 (19) ÅT = 273 K
β = 98.955 (2)°Block, colorless
V = 1129.7 (3) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2783 independent reflections
Radiation source: fine-focus sealed tube2042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.942, Tmax = 0.948k = 1110
9661 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.047P)2 + 0.3279P]
where P = (Fo2 + 2Fc2)/3
2783 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C9H9NO6SV = 1129.7 (3) Å3
Mr = 259.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0108 (12) ŵ = 0.30 mm1
b = 8.7671 (11) ÅT = 273 K
c = 14.4761 (19) Å0.20 × 0.20 × 0.18 mm
β = 98.955 (2)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2783 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2042 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.948Rint = 0.028
9661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2783 reflectionsΔρmin = 0.33 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24972 (5)0.42896 (5)0.03839 (4)0.04280 (16)
O60.42147 (14)0.11875 (17)0.20037 (9)0.0491 (4)
O50.28877 (18)0.09358 (17)0.15947 (13)0.0665 (5)
O40.32570 (17)0.07267 (19)0.01616 (11)0.0608 (4)
O30.12224 (18)0.08499 (19)0.11609 (9)0.0581 (4)
O20.26056 (19)0.53991 (19)0.10923 (12)0.0694 (5)
O10.24582 (17)0.48263 (19)0.05419 (11)0.0613 (4)
N10.19276 (18)0.10350 (18)0.03781 (11)0.0399 (4)
C10.3960 (2)0.2976 (3)0.0338 (2)0.0737 (8)
H1A0.49050.34960.01880.111*
H1B0.39090.24820.09340.111*
H1C0.38720.22270.01340.111*
C20.0851 (2)0.3192 (2)0.07342 (12)0.0383 (4)
C40.11351 (19)0.16778 (19)0.03452 (11)0.0333 (4)
C30.01499 (19)0.2509 (2)0.00566 (12)0.0361 (4)
H30.05350.26070.05750.043*
C50.1726 (2)0.1479 (2)0.12854 (12)0.0380 (4)
C80.3013 (2)0.0425 (2)0.16253 (13)0.0417 (4)
C70.0276 (2)0.3049 (3)0.16756 (13)0.0502 (5)
H70.07500.35260.21240.060*
C60.1005 (2)0.2193 (2)0.19439 (13)0.0489 (5)
H60.13880.20940.25760.059*
C90.5498 (2)0.0281 (3)0.24167 (17)0.0684 (7)
H9A0.52050.03870.28820.103*
H9B0.62850.09450.27030.103*
H9C0.58530.03130.19390.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0366 (3)0.0341 (3)0.0543 (3)0.00290 (19)0.0033 (2)0.0009 (2)
O60.0375 (7)0.0557 (9)0.0497 (8)0.0009 (6)0.0073 (6)0.0037 (6)
O50.0590 (10)0.0406 (9)0.0924 (12)0.0075 (7)0.0115 (9)0.0010 (8)
O40.0422 (8)0.0762 (11)0.0641 (10)0.0123 (8)0.0087 (7)0.0088 (8)
O30.0607 (9)0.0771 (11)0.0362 (8)0.0002 (8)0.0061 (7)0.0069 (7)
O20.0670 (11)0.0601 (10)0.0752 (11)0.0246 (8)0.0075 (8)0.0210 (8)
O10.0565 (10)0.0612 (10)0.0608 (9)0.0055 (8)0.0081 (7)0.0182 (8)
N10.0409 (9)0.0378 (9)0.0414 (9)0.0030 (7)0.0072 (7)0.0010 (6)
C10.0395 (12)0.0476 (14)0.134 (2)0.0002 (10)0.0131 (13)0.0101 (14)
C20.0344 (9)0.0383 (10)0.0400 (10)0.0025 (8)0.0006 (7)0.0024 (7)
C40.0332 (9)0.0318 (9)0.0341 (9)0.0039 (7)0.0029 (7)0.0008 (7)
C30.0353 (9)0.0368 (10)0.0341 (9)0.0032 (7)0.0010 (7)0.0025 (7)
C50.0376 (9)0.0357 (10)0.0380 (9)0.0016 (7)0.0022 (7)0.0004 (7)
C80.0387 (10)0.0458 (12)0.0383 (10)0.0032 (8)0.0015 (7)0.0010 (8)
C70.0546 (12)0.0569 (13)0.0381 (10)0.0170 (10)0.0038 (9)0.0044 (9)
C60.0561 (12)0.0555 (12)0.0318 (9)0.0145 (10)0.0037 (8)0.0028 (9)
C90.0412 (12)0.0959 (19)0.0622 (14)0.0130 (12)0.0100 (10)0.0143 (13)
Geometric parameters (Å, º) top
S1—O11.4260 (16)C2—C31.383 (3)
S1—O21.4278 (16)C2—C71.386 (2)
S1—C11.744 (2)C4—C31.377 (2)
S1—C21.7749 (18)C4—C51.393 (2)
O6—C81.317 (2)C3—H30.9300
O6—C91.453 (2)C5—C61.384 (3)
O5—C81.198 (2)C5—C81.504 (3)
O4—N11.220 (2)C7—C61.381 (3)
O3—N11.221 (2)C7—H70.9300
N1—C41.469 (2)C6—H60.9300
C1—H1A0.9600C9—H9A0.9600
C1—H1B0.9600C9—H9B0.9600
C1—H1C0.9600C9—H9C0.9600
O1—S1—O2117.69 (11)C4—C3—C2117.99 (15)
O1—S1—C1108.11 (12)C4—C3—H3121.0
O2—S1—C1109.99 (13)C2—C3—H3121.0
O1—S1—C2107.80 (9)C6—C5—C4117.83 (16)
O2—S1—C2108.17 (9)C6—C5—C8118.24 (16)
C1—S1—C2104.24 (10)C4—C5—C8123.69 (17)
C8—O6—C9116.36 (18)O5—C8—O6125.95 (18)
O4—N1—O3123.86 (17)O5—C8—C5122.42 (17)
O4—N1—C4117.96 (15)O6—C8—C5111.49 (17)
O3—N1—C4118.18 (15)C6—C7—C2119.59 (18)
S1—C1—H1A109.5C6—C7—H7120.2
S1—C1—H1B109.5C2—C7—H7120.2
H1A—C1—H1B109.5C7—C6—C5120.91 (17)
S1—C1—H1C109.5C7—C6—H6119.5
H1A—C1—H1C109.5C5—C6—H6119.5
H1B—C1—H1C109.5O6—C9—H9A109.5
C3—C2—C7121.07 (17)O6—C9—H9B109.5
C3—C2—S1119.07 (13)H9A—C9—H9B109.5
C7—C2—S1119.85 (15)O6—C9—H9C109.5
C3—C4—C5122.57 (16)H9A—C9—H9C109.5
C3—C4—N1117.78 (15)H9B—C9—H9C109.5
C5—C4—N1119.60 (15)
O1—S1—C2—C325.21 (18)N1—C4—C5—C6175.52 (17)
O2—S1—C2—C3153.45 (16)C3—C4—C5—C8172.23 (17)
C1—S1—C2—C389.52 (18)N1—C4—C5—C810.2 (3)
O1—S1—C2—C7153.91 (17)C9—O6—C8—O50.2 (3)
O2—S1—C2—C725.7 (2)C9—O6—C8—C5175.83 (17)
C1—S1—C2—C791.4 (2)C6—C5—C8—O5103.2 (2)
O4—N1—C4—C3157.53 (17)C4—C5—C8—O571.0 (3)
O3—N1—C4—C322.0 (2)C6—C5—C8—O672.6 (2)
O4—N1—C4—C520.2 (2)C4—C5—C8—O6113.1 (2)
O3—N1—C4—C5160.31 (17)C3—C2—C7—C60.9 (3)
C5—C4—C3—C21.4 (3)S1—C2—C7—C6179.96 (17)
N1—C4—C3—C2176.25 (15)C2—C7—C6—C50.2 (3)
C7—C2—C3—C40.2 (3)C4—C5—C6—C71.2 (3)
S1—C2—C3—C4179.26 (13)C8—C5—C6—C7173.4 (2)
C3—C4—C5—C62.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.543.370 (2)148
C6—H6···O3ii0.932.593.216 (2)125
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9NO6S
Mr259.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)9.0108 (12), 8.7671 (11), 14.4761 (19)
β (°) 98.955 (2)
V3)1129.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
9661, 2783, 2042
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.05
No. of reflections2783
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.543.370 (2)148.2
C6—H6···O3ii0.932.593.216 (2)125.2
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the National Natural Science Foundation of China (No. 20872030) and Heilongjiang University, China, for supporting this study.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarter, C. G., Lee, D. L., Michaely, W. J. & Kraatz, G. W. (1991). US Patent No. 5 006 158.  Google Scholar
First citationKopsell, D. A., Armel, G. R., Mueller, T. C. & Sams, C. E. (2009). J. Agric. Food Chem. 57, 6362–6368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds