organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1663-o1664

Polythia­zide

aInstitute of Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at

(Received 1 June 2010; accepted 9 June 2010; online 16 June 2010)

The crystal structure of the title compound, C11H13ClF3N3O4S3 (systematic name: 6-chloro-2-methyl-3-{[(2,2,2-trifluoro­eth­yl)sulfan­yl]meth­yl}-3,4-dihydro-2H-1,2,4-benzothia­diazine-7-sul­f­on­amide 1,1-diox­ide; CRN: 346–18–9), exhibits a two-dimensional network of hydrogen-bonded mol­ecules parallel to ([\overline{1}]01). The NH and NH2 groups act as donor sites and the sulfonyl O atoms as acceptor sites in N—H⋯O hydrogen bonds, and a C—H⋯O interaction also occurs. The thiadiazine ring adopts an envelope conformation with the N atom bonded to sulfur at the tip of the flap, and the methyl substituent is in an axial position.

Related literature

For the preparation of polythia­zide, see: McManus (1961[McManus, J. M. (1961). US Patent No. 3009911.]). For a comprehensive description of polythia­zide, see: Negendra Vara et al. (1991[Negendra Vara, P. T., Venkata, R. E., Sarveswara, S. B., Sastry, S. P. C. & Kostek, L. J. (1991). Analytical Profiles of Drug Substances and Excipients, Vol. 20 edited by K. Florey, pp. 665-692. San Diego: Academic Press.]). For a preliminary crystallographic study at room temperature, see Dupont & Dideberg (1970[Dupont, L. & Dideberg, O. (1970). Acta Cryst. B26, 1884-1885.]). For crystal structures of polymorphs and solvates of related thia­zide compounds, see: Zhou et al. (2006[Zhou, H., Hu, N.-H., Li, Z.-G., Dou, Y.-L. & Xu, J.-W. (2006). Acta Cryst. E62, o3009-o3010.]); Johnston et al. (2007a[Johnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007a). Acta Cryst. E63, o2422.],b[Johnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007b). Acta Cryst. E63, o2423.]); Johnston et al. (2007[Johnston, A., Florence, A. J. & Kennedy, A. R. (2007). Acta Cryst. E63, o4021.]); Fernandes, Florence et al. (2006[Fernandes, P., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2006). Acta Cryst. E62, o2216-o2218.]); Fernandes, Shankland et al. (2007[Fernandes, P., Shankland, K., Florence, A. J., Shankland, N. & Johnston, A. (2007). J. Pharm. Sci. 96, 1192-1202.]); Johnston et al. (2008[Johnston, A., Florence, A. J. & Kennedy, A. R. (2008). Acta Cryst. E64, o1105-o1106.]); Fabbiani et al. (2007[Fabbiani, F. P. A., Leech, C. K., Shankland, K., Johnston, A., Fernandes, P., Florence, A. J. & Shankland, N. (2007). Acta Cryst. C63, o659-o663.]); Fernandes, Johnston et al. (2007[Fernandes, P., Johnston, A., Leech, C. K., Shankland, K., David, W. I. F. & Florence, A. J. (2007). Acta Cryst. E63, o3956.]); Fernandes, Leech et al. (2007[Fernandes, P., Leech, C. K., Johnston, A., Shankland, K., David, W. I. F., Shankland, N. & Florence, A. J. (2007). Acta Cryst. E63, o3685.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13ClF3N3O4S3

  • Mr = 439.87

  • Monoclinic, C c

  • a = 14.6659 (7) Å

  • b = 9.5498 (6) Å

  • c = 13.6720 (7) Å

  • β = 116.149 (3)°

  • V = 1718.87 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 120 K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker-Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.963

  • 9021 measured reflections

  • 3197 independent reflections

  • 2768 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.098

  • S = 1.06

  • 3197 reflections

  • 239 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1504 Friedel pairs

  • Flack parameter: 0.12 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O4i 0.88 (2) 2.21 (4) 2.906 (4) 135 (4)
N2—H1N⋯O1ii 0.88 (2) 2.59 (4) 3.230 (4) 130 (4)
N3—H3N⋯O2iii 0.88 (2) 2.11 (3) 2.929 (5) 154 (5)
C10—H10B⋯O2iv 0.99 2.31 3.267 (5) 163
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The title compound is a thiazide diuretic drug. The asymmetric unit contains a single molecule (see Fig. 1), and the lattice parameters are consistent with a preliminary crystallographic study (Dupont & Dideberg, 1970). The geometrical parameters of the thiazide unit are in concert with other structures of the same class of compounds (see section Related literature). The S2—N3 bond of the sulfonyl group is gauche with respect to the C5—C6 bond of the phenyl ring. The conformation of C—S—C—C side chain of the heterocyclic ring is characterized by the torsions angles N1—C1—C9—S3 = 170.8 (3)°, C1—C9 —S3—C10 = 162.6 (3)° and C9—S3—C10—C11 = 94.5 (4)°.

Each polythiazide molecule is N—H···O bonded to two neighbouring molecules so that a hydrogen bonded sheet parallel to (-101) is formed (see Fig. 2). The NH group and one sulfonamide O atom are engaged in an N2—H···O4(x + 1/2, -y + 1/2) interaction. An N3—H···O2(x, y - 1, z) bond links two molecules via the sulfonamide NH2 group and a thiazide sulfonyl O atom. Each N—H···O bonded sheet contains an additional short C10—H···O2(x + 1/2, -y + 3/2, z + 1/2) contact (see Table 1). A longer N2—H···O1(x, -y + 1, z + 1/2) contact between neighbouring sheets, in which the NH group is involved again, is also worth mentioning. The closest intermolecular contact of the second NH2 H atom is to the S atom of the side chain, H2N···S3(x, -y + 1, z - 1/2) = 2.93 (4) Å.

Related literature top

For the preparation of polythiazide, see: McManus (1961). For a comprehensive description of polythiazide, see: Negendra Vara et al. (1991). For a preliminary crystallographic study at room temperature, see Dupont & Dideberg (1970). For crystal structures of polymorphs and solvates of related thiazide compounds, see: Zhou et al. (2006); Johnston et al. (2007a,b); Johnston et al. (2007); Fernandes, Florence et al. (2006); Fernandes, Shankland et al. (2007); Johnston et al. (2008); Fabbiani et al. (2007); Fernandes, Johnston et al. (2007); Fernandes, Leech et al. (2007).

Experimental top

The investigated crystals were obtained from a polythiazide sample from Pfizer (Brussels, Belgium).

Refinement top

All H atoms were identified in a difference map. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip (C—H = 0.98 Å) and refined with 1.5 Ueq(C). H atoms bonded to primary (C—H = 1.00 Å), secondary CH2 (C—H = 0.99 Å) and aromatic carbon atoms (C—H = 0.95 Å) were positioned geometrically and refined with Uiso = 1.2 Ueq(C). Hydrogen atoms attached to N were refined with restrained distances [N—H = 0.88 (2) Å]; and their Uiso parameters were refined freely.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary size.
[Figure 2] Fig. 2. Portion of a hydrogen bonded sheet parallel to (-101) and defined by N—H···O (dashed lines) and additional C—H···O (dotted lines) contacts. H and O atoms directly involved in these interactions are drawn as balls, and hydrogen attached to C atoms are omitted for clarity.
6-chloro-2-methyl-3-{[(2,2,2-trifluoroethyl)sulfanyl]methyl}-3,4-dihydro- 2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide top
Crystal data top
C11H13ClF3N3O4S3F(000) = 896
Mr = 439.87Dx = 1.700 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 11202 reflections
a = 14.6659 (7) Åθ = 2.9–27.5°
b = 9.5498 (6) ŵ = 0.64 mm1
c = 13.6720 (7) ÅT = 120 K
β = 116.149 (3)°Plate, colourless
V = 1718.87 (16) Å30.12 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker-Nonius Roper CCD camera on κ-goniostat
diffractometer
3197 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.3°
ϕ & ω scansh = 1718
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1111
Tmin = 0.927, Tmax = 0.963l = 1516
9021 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.009P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3197 reflectionsΔρmax = 0.32 e Å3
239 parametersΔρmin = 0.41 e Å3
5 restraintsAbsolute structure: Flack (1983), 1504 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (8)
Crystal data top
C11H13ClF3N3O4S3V = 1718.87 (16) Å3
Mr = 439.87Z = 4
Monoclinic, CcMo Kα radiation
a = 14.6659 (7) ŵ = 0.64 mm1
b = 9.5498 (6) ÅT = 120 K
c = 13.6720 (7) Å0.12 × 0.10 × 0.06 mm
β = 116.149 (3)°
Data collection top
Bruker-Nonius Roper CCD camera on κ-goniostat
diffractometer
3197 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2768 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.963Rint = 0.055
9021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.32 e Å3
S = 1.06Δρmin = 0.41 e Å3
3197 reflectionsAbsolute structure: Flack (1983), 1504 Friedel pairs
239 parametersAbsolute structure parameter: 0.12 (8)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.88627 (8)0.03391 (10)0.90846 (8)0.0280 (2)
S10.94030 (7)0.63949 (10)0.76867 (7)0.0226 (2)
S20.77245 (7)0.12532 (10)0.65142 (8)0.0241 (2)
S31.04262 (8)0.75479 (12)1.17195 (8)0.0262 (2)
O10.9673 (2)0.6291 (3)0.6804 (2)0.0285 (7)
O20.8556 (2)0.7293 (3)0.7536 (2)0.0272 (7)
O30.7388 (2)0.2033 (3)0.5523 (2)0.0348 (7)
O40.6988 (2)0.0628 (3)0.6808 (2)0.0344 (7)
N11.0394 (2)0.6927 (4)0.8780 (3)0.0228 (7)
N21.0131 (3)0.5322 (3)0.9992 (3)0.0214 (7)
H1N1.043 (4)0.502 (6)1.067 (2)0.052 (16)*
N30.8417 (3)0.0017 (4)0.6449 (3)0.0255 (8)
H2N0.892 (3)0.022 (5)0.631 (4)0.050 (16)*
H3N0.856 (4)0.066 (4)0.696 (3)0.041 (15)*
C11.0167 (3)0.6786 (4)0.9736 (3)0.0233 (9)
H10.94790.71950.95310.028*
C20.9619 (3)0.4380 (4)0.9200 (3)0.0192 (8)
C30.9196 (3)0.4722 (4)0.8079 (3)0.0193 (8)
C40.8626 (3)0.3757 (4)0.7286 (3)0.0188 (8)
H40.83280.40270.65410.023*
C50.8483 (3)0.2403 (4)0.7563 (3)0.0199 (8)
C60.8960 (3)0.2032 (4)0.8677 (3)0.0192 (8)
C70.9523 (3)0.2976 (4)0.9475 (3)0.0206 (8)
H70.98490.26861.02150.025*
C81.1391 (3)0.6397 (5)0.8917 (3)0.0289 (10)
H8A1.19330.69810.94470.043*
H8B1.14210.64300.82160.043*
H8C1.14800.54280.91800.043*
C91.0919 (3)0.7580 (4)1.0712 (3)0.0251 (9)
H9A1.09850.85571.05090.030*
H9B1.15950.71291.10040.030*
C101.1529 (3)0.8004 (6)1.2942 (3)0.0360 (11)
H10A1.15190.74721.35580.043*
H10B1.21430.77151.28650.043*
C111.1605 (4)0.9502 (6)1.3201 (4)0.0438 (13)
F11.2461 (3)0.9823 (5)1.4089 (3)0.0842 (14)
F21.1618 (3)1.0300 (4)1.2398 (3)0.0708 (10)
F31.0838 (2)0.9967 (4)1.3395 (3)0.0656 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0427 (6)0.0181 (5)0.0234 (5)0.0054 (4)0.0147 (4)0.0008 (4)
S10.0297 (5)0.0179 (5)0.0215 (5)0.0026 (4)0.0125 (4)0.0038 (4)
S20.0276 (5)0.0226 (6)0.0185 (5)0.0012 (5)0.0069 (4)0.0028 (4)
S30.0322 (5)0.0254 (6)0.0257 (5)0.0050 (4)0.0172 (4)0.0072 (4)
O10.0404 (17)0.0296 (17)0.0201 (15)0.0011 (13)0.0175 (13)0.0038 (12)
O20.0278 (15)0.0215 (16)0.0331 (17)0.0057 (13)0.0141 (13)0.0059 (13)
O30.0458 (18)0.0267 (17)0.0168 (15)0.0028 (14)0.0000 (12)0.0001 (12)
O40.0300 (16)0.0406 (19)0.0346 (18)0.0126 (15)0.0161 (14)0.0130 (15)
N10.0321 (19)0.0193 (18)0.0214 (18)0.0022 (15)0.0157 (15)0.0036 (14)
N20.0327 (18)0.0143 (17)0.0176 (18)0.0026 (14)0.0116 (15)0.0015 (13)
N30.034 (2)0.020 (2)0.025 (2)0.0027 (16)0.0156 (16)0.0014 (15)
C10.036 (2)0.017 (2)0.021 (2)0.0040 (18)0.0165 (17)0.0021 (16)
C20.0214 (19)0.019 (2)0.017 (2)0.0023 (16)0.0083 (16)0.0020 (16)
C30.024 (2)0.016 (2)0.019 (2)0.0041 (16)0.0111 (16)0.0020 (16)
C40.0179 (18)0.019 (2)0.017 (2)0.0053 (16)0.0061 (15)0.0013 (16)
C50.022 (2)0.019 (2)0.019 (2)0.0006 (17)0.0092 (17)0.0054 (16)
C60.0242 (19)0.017 (2)0.018 (2)0.0004 (16)0.0109 (16)0.0005 (16)
C70.028 (2)0.019 (2)0.0131 (19)0.0031 (17)0.0075 (15)0.0003 (15)
C80.021 (2)0.041 (3)0.025 (2)0.0011 (19)0.0104 (17)0.0052 (19)
C90.032 (2)0.023 (2)0.021 (2)0.0007 (18)0.0118 (17)0.0009 (17)
C100.033 (2)0.054 (3)0.020 (2)0.004 (2)0.0101 (18)0.002 (2)
C110.040 (3)0.054 (4)0.044 (3)0.020 (2)0.024 (2)0.021 (3)
F10.066 (2)0.128 (4)0.062 (2)0.063 (2)0.0310 (18)0.056 (2)
F20.095 (2)0.052 (2)0.072 (2)0.0414 (19)0.043 (2)0.0140 (18)
F30.069 (2)0.052 (2)0.095 (3)0.0182 (17)0.053 (2)0.0440 (19)
Geometric parameters (Å, º) top
Cl1—C61.736 (4)C2—C31.415 (5)
S1—O11.429 (3)C2—C71.416 (6)
S1—O21.448 (3)C3—C41.388 (5)
S1—N11.640 (3)C4—C51.390 (5)
S1—C31.753 (4)C4—H40.9500
S2—O31.430 (3)C5—C61.412 (5)
S2—O41.437 (3)C6—C71.375 (5)
S2—N31.610 (4)C7—H70.9500
S2—C51.759 (4)C8—H8A0.9800
S3—C101.794 (4)C8—H8B0.9800
S3—C91.816 (4)C8—H8C0.9800
N1—C81.480 (5)C9—H9A0.9900
N1—C11.490 (5)C9—H9B0.9900
N2—C21.353 (5)C10—C111.467 (7)
N2—C11.447 (5)C10—H10A0.9900
N2—H1N0.88 (2)C10—H10B0.9900
N3—H2N0.87 (2)C11—F31.340 (6)
N3—H3N0.884 (19)C11—F21.343 (6)
C1—C91.508 (5)C11—F11.343 (6)
C1—H11.0000
O1—S1—O2117.39 (17)C3—C4—H4119.5
O1—S1—N1109.12 (17)C5—C4—H4119.5
O2—S1—N1107.83 (17)C4—C5—C6117.7 (3)
O1—S1—C3110.15 (18)C4—C5—S2118.4 (3)
O2—S1—C3109.29 (18)C6—C5—S2123.9 (3)
N1—S1—C3101.91 (18)C7—C6—C5122.0 (4)
O3—S2—O4119.56 (19)C7—C6—Cl1117.5 (3)
O3—S2—N3107.61 (19)C5—C6—Cl1120.5 (3)
O4—S2—N3105.8 (2)C6—C7—C2120.3 (3)
O3—S2—C5106.11 (18)C6—C7—H7119.8
O4—S2—C5108.34 (18)C2—C7—H7119.8
N3—S2—C5109.11 (19)N1—C8—H8A109.5
C10—S3—C9101.8 (2)N1—C8—H8B109.5
C8—N1—C1116.6 (3)H8A—C8—H8B109.5
C8—N1—S1116.0 (3)N1—C8—H8C109.5
C1—N1—S1108.8 (2)H8A—C8—H8C109.5
C2—N2—C1121.0 (3)H8B—C8—H8C109.5
C2—N2—H1N118 (4)C1—C9—S3106.4 (3)
C1—N2—H1N121 (4)C1—C9—H9A110.5
S2—N3—H2N116 (4)S3—C9—H9A110.5
S2—N3—H3N115 (3)C1—C9—H9B110.5
H2N—N3—H3N115 (5)S3—C9—H9B110.5
N2—C1—N1110.2 (3)H9A—C9—H9B108.6
N2—C1—C9111.2 (3)C11—C10—S3113.7 (4)
N1—C1—C9111.8 (3)C11—C10—H10A108.8
N2—C1—H1107.8S3—C10—H10A108.8
N1—C1—H1107.8C11—C10—H10B108.8
C9—C1—H1107.8S3—C10—H10B108.8
N2—C2—C3122.5 (4)H10A—C10—H10B107.7
N2—C2—C7120.1 (3)F3—C11—F2106.8 (5)
C3—C2—C7117.3 (3)F3—C11—F1106.1 (4)
C4—C3—C2121.2 (4)F2—C11—F1105.4 (4)
C4—C3—S1119.5 (3)F3—C11—C10113.0 (4)
C2—C3—S1119.3 (3)F2—C11—C10112.5 (4)
C3—C4—C5121.1 (3)F1—C11—C10112.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O4i0.88 (2)2.21 (4)2.906 (4)135 (4)
N2—H1N···O1ii0.88 (2)2.59 (4)3.230 (4)130 (4)
N3—H3N···O2iii0.88 (2)2.11 (3)2.929 (5)154 (5)
C10—H10B···O2iv0.992.313.267 (5)163
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y1, z; (iv) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13ClF3N3O4S3
Mr439.87
Crystal system, space groupMonoclinic, Cc
Temperature (K)120
a, b, c (Å)14.6659 (7), 9.5498 (6), 13.6720 (7)
β (°) 116.149 (3)
V3)1718.87 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker-Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.927, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
9021, 3197, 2768
Rint0.055
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.098, 1.06
No. of reflections3197
No. of parameters239
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.41
Absolute structureFlack (1983), 1504 Friedel pairs
Absolute structure parameter0.12 (8)

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O4i0.88 (2)2.21 (4)2.906 (4)135 (4)
N2—H1N···O1ii0.88 (2)2.59 (4)3.230 (4)130 (4)
N3—H3N···O2iii0.884 (19)2.11 (3)2.929 (5)154 (5)
C10—H10B···O2iv0.992.313.267 (5)163.4
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y1, z; (iv) x+1/2, y+3/2, z+1/2.
 

Footnotes

Current address: School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, England.

References

First citationDupont, L. & Dideberg, O. (1970). Acta Cryst. B26, 1884–1885.  CSD CrossRef IUCr Journals Google Scholar
First citationFabbiani, F. P. A., Leech, C. K., Shankland, K., Johnston, A., Fernandes, P., Florence, A. J. & Shankland, N. (2007). Acta Cryst. C63, o659–o663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFernandes, P., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2006). Acta Cryst. E62, o2216–o2218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFernandes, P., Johnston, A., Leech, C. K., Shankland, K., David, W. I. F. & Florence, A. J. (2007). Acta Cryst. E63, o3956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFernandes, P., Leech, C. K., Johnston, A., Shankland, K., David, W. I. F., Shankland, N. & Florence, A. J. (2007). Acta Cryst. E63, o3685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFernandes, P., Shankland, K., Florence, A. J., Shankland, N. & Johnston, A. (2007). J. Pharm. Sci. 96, 1192–1202.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007a). Acta Cryst. E63, o2422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007b). Acta Cryst. E63, o2423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnston, A., Florence, A. J. & Kennedy, A. R. (2007). Acta Cryst. E63, o4021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnston, A., Florence, A. J. & Kennedy, A. R. (2008). Acta Cryst. E64, o1105–o1106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcManus, J. M. (1961). US Patent No. 3009911.  Google Scholar
First citationNegendra Vara, P. T., Venkata, R. E., Sarveswara, S. B., Sastry, S. P. C. & Kostek, L. J. (1991). Analytical Profiles of Drug Substances and Excipients, Vol. 20 edited by K. Florey, pp. 665–692. San Diego: Academic Press.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationZhou, H., Hu, N.-H., Li, Z.-G., Dou, Y.-L. & Xu, J.-W. (2006). Acta Cryst. E62, o3009–o3010.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1663-o1664
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds