organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1688-o1689

7-(5-Methyl­sulfanyl-β-D-erythro­furan­osyl)-7H-pyrrolo­[2,3-d]pyrimidin-4-amine monohydrate (MT-tubercidin·H2O)

aCarbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt 5040, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 21 April 2010; accepted 28 May 2010; online 18 June 2010)

The title compound, C12H16N4O3S·H2O, which has potential as a possible anti­malarial drug, was studied when small deviations in melting points, for two differently aged preparations, were observed. The unexpected existence of a water mol­ecule of crystallization is considered to be the cause of this variation. The 7H-pyrrolo­[2,3-d]pyrimidine unit is very slightly puckered with a total puckering amplitude of 0.035 (2) Å; its mean plane makes an angle of 88.40 (12)° with the mean plane through the ribofuranosyl unit. In the crystal, the mol­ecules are bound by strong O—H⋯N and N—H⋯O hydrogen bonds, utilizing all available protons and linking mainly through the water of crystallization.

Related literature

For details of the synthesis of and for background to the title compound, see: Riegelhaupt et al. (2010[Riegelhaupt, P. M., Cassera, M. B., Froehlich, R. F. G., Hazelton, K. Z., Hefter, J. J., Schramm, V. L. & Akabas, M. H. (2010). Mol. Biochem. Parasitol. 169, 40-49.]). For related structures, see: Seela et al. (2007[Seela, F., Peng, X., Eickmeier, H. & Reuter, H. (2007). Acta Cryst. C63, o96-o98.]); Abola & Sundaralingam (1973[Abola, E. & Sundaralingam, M. (1973). Acta Cryst. B29, 697-703.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N4O3S·H2O

  • Mr = 314.36

  • Orthorhombic, P 21 21 21

  • a = 4.790 (1) Å

  • b = 16.610 (3) Å

  • c = 18.020 (4) Å

  • V = 1433.7 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.22 mm−1

  • T = 100 K

  • 0.50 × 0.02 × 0.02 mm

Data collection
  • Rigaku Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.712, Tmax = 1.0

  • 8013 measured reflections

  • 2582 independent reflections

  • 2422 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.091

  • S = 1.08

  • 2582 reflections

  • 209 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 986 Friedel pairs

  • Flack parameter: 0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2′—H2′O⋯N3i 0.79 (3) 1.99 (3) 2.776 (3) 173 (3)
O1W—H1A⋯O3′ 0.82 (3) 1.96 (3) 2.748 (3) 162 (3)
O1W—H1B⋯O2′ii 0.80 (3) 2.07 (3) 2.848 (3) 162 (3)
O3′—H3′O⋯N1iii 0.84 (3) 1.94 (3) 2.766 (3) 166 (3)
N6—H6A⋯O1Wiv 0.90 (3) 2.12 (3) 2.998 (3) 166 (3)
N6—H6B⋯O1Wv 0.82 (3) 2.13 (3) 2.928 (3) 164 (3)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku Americas, 2005[Rigaku Americas (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: FSProcess in PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: FSProcess in PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was prepared as part of a study of purine transport or purine salvage pathway inhibitors with potential as alternative anti-malarial drugs (Riegelhaupt et al., 2010). Its common name is 7-(5'Methylthio-β-D-erythrofuranosyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine monohydrate usually shortened to MT-tubercidin.H2O while the conventional name is 2-(4-Amino-pyrrolo[2,3-d]pyrimidin-7-yl)-5-methylsulfanylmethyl -tetrahydrofuran-3,4-diol monohydrate. The structural solution showed that in both batches there was an unexpected water molecule of crystallization, a likely cause of the variation in melting points with differently aged samples. The results for the better crystals are presented here. The asymmetric unit contents are shown in Figure 1.

The absolute configuration is defined as C1'(R), C2'(R), C3'(S) and C4'(S) with the ribofuranosyl unit adopting an (C2'-)endo-envelope Δ conformation (Q(2) 0.434 (3) Å, ϕ(2) 76.3 (3)°, Cremer & Pople (1975)). The 7H-pyrrolo[2,3-d]pyrimidine unit is very slightly puckered with total puckering amplitude of 0.035 (2) Å: its mean plane makes an angle of 88.40 (12)° with the mean plane through the ribofuranosyl unit. The orientation of the C4'–C5' bond is slightly different (with O4'-C1'-N9—C4 torsion angle of -126.6 (2)°) to that found in the related compounds 2'-Deoxy-2-fluorotubercidin (-110.2 (3)°, Seela et al., 2007) and tubercidin (-112.8 (4)°, Abola & Sundaralingam, 1973). Other dimensions are normal.

The molecules are packed in three dimensions using 6 strong hydrogen bonds of the O–H···O and N–H···O types (Table 1). The graph set motifs (Etter et al., 1990; Bernstein et al., 1995) are extensive at the binary level: C22(7), C22(9), C22(11), C22(12), C22(17), D33(10), D33(13), D33(14), D33(15), D33(17) and D33(18) types are found being based mainly on linked chains through the included water molecule (the latter feature is shown in Figure 2). The C–H···π interaction involving the methyl hydrogen H6'A and the 5-membered pyrrolo ring (at 2.80 Å) is considered fortuitous but noted here for completeness.

Related literature top

For details of the synthesis of and for background to the title compound, see: Riegelhaupt et al. (2010). For related structures, see: Seela et al. (2007); Abola & Sundaralingam (1973). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The title compound was prepared as described in the supplementary data section (compound 10) by Riegelhaupt et al. (2010).

Refinement top

The H atoms of the ordered hydroxyl, water and amine atoms were placed in the positions indicated by a difference electron density map and their positions were allowed to refine with Uiso(H) = 1.5Ueq(O,N). The water H atoms were restrained to an O–H distance of 0.82 (2) Å. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 (aromatic), 0.99 (methylene) or 1.00 (tertiary) Å with Uiso(H) = 1.2Ueq(C,N). Thirty-four high angle outlier reflections identified by having Fo>>Fc and collected in the same area of reciprocal space (and with ΔFo**2/e.s.d. > 5) were omitted from the final cycles of refinement based on the lack of backstop mask corrections.

Computing details top

Data collection: CrystalClear (Rigaku Americas, 2005); cell refinement: FSProcess in PROCESS-AUTO (Rigaku, 1998); data reduction: FSProcess in PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP (Farrugia, 1999) view showing the asymmetric unit of (I) with 50% probabilility ellipsoids. The dotted lines represents an intermolecular hydrogen bond.
[Figure 2] Fig. 2. Mercury cell packing view (Macrae et al., 2006) emphasizing the links with the water of crystallization: conventional hydrogen bonds not running up the a axis are shown (dotted lines).For the complete hydrogen bonding set see Table 1. Contact atoms are shown in ball mode; H atoms are omitted for clarity. Symmetry operations: (i) 1 - x, y - 1/2, 3/2 - z (ii) 1/2 - x, 1 - y, 1/2 + z.
7-(5-Methylsulfanyl-β-D-erythrofuranosyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine monohydrate top
Crystal data top
C12H16N4O3S·H2OF(000) = 664
Mr = 314.36Dx = 1.456 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 1322 reflections
a = 4.790 (1) Åθ = 10.7–72.1°
b = 16.610 (3) ŵ = 2.22 mm1
c = 18.020 (4) ÅT = 100 K
V = 1433.7 (5) Å3Needle, colourless
Z = 40.50 × 0.02 × 0.02 mm
Data collection top
Rigaku Spider
diffractometer
2582 independent reflections
Radiation source: Rigaku MM007 rotating anode2422 reflections with I > 2σ(I)
Rigaku VariMax-HF Confocal Optical System monochromatorRint = 0.045
Detector resolution: 10 pixels mm-1θmax = 71.9°, θmin = 7.3°
ω–scansh = 52
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2020
Tmin = 0.712, Tmax = 1.0l = 2119
8013 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.031P)2 + 0.7234P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2582 reflectionsΔρmax = 0.29 e Å3
209 parametersΔρmin = 0.33 e Å3
2 restraintsAbsolute structure: Flack (1983), 986 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
C12H16N4O3S·H2OV = 1433.7 (5) Å3
Mr = 314.36Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 4.790 (1) ŵ = 2.22 mm1
b = 16.610 (3) ÅT = 100 K
c = 18.020 (4) Å0.50 × 0.02 × 0.02 mm
Data collection top
Rigaku Spider
diffractometer
2582 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2422 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 1.0Rint = 0.045
8013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091Δρmax = 0.29 e Å3
S = 1.08Δρmin = 0.33 e Å3
2582 reflectionsAbsolute structure: Flack (1983), 986 Friedel pairs
209 parametersAbsolute structure parameter: 0.02 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.97214 (14)0.38389 (4)0.36963 (3)0.01889 (16)
O1W0.2297 (5)0.66101 (10)0.58560 (11)0.0210 (4)
H1A0.363 (5)0.6337 (16)0.5723 (16)0.032*
H1B0.110 (6)0.6336 (16)0.6041 (16)0.032*
O2'0.8902 (4)0.53482 (10)0.64314 (9)0.0155 (4)
H2'O0.971 (7)0.5148 (17)0.6768 (15)0.023*
O3'0.6026 (4)0.56178 (10)0.51450 (10)0.0171 (4)
H3'O0.553 (7)0.5708 (17)0.4704 (16)0.026*
O4'0.4719 (4)0.38417 (10)0.55162 (8)0.0166 (4)
N10.1518 (5)0.40830 (11)0.87950 (11)0.0148 (5)
C20.0798 (6)0.45356 (14)0.82094 (13)0.0152 (5)
H20.06810.49060.82930.018*
N30.1866 (5)0.45398 (11)0.75258 (11)0.0132 (4)
C40.3891 (6)0.39748 (13)0.74463 (13)0.0126 (5)
C50.4795 (6)0.34442 (13)0.79930 (13)0.0130 (5)
C60.3551 (5)0.35230 (14)0.87012 (13)0.0144 (5)
N60.4318 (5)0.30707 (13)0.92757 (12)0.0188 (5)
H6A0.355 (7)0.3126 (17)0.9726 (16)0.028*
H6B0.552 (7)0.2722 (17)0.9214 (17)0.028*
C70.6937 (6)0.29487 (14)0.76725 (14)0.0155 (5)
H70.79490.25320.79130.019*
C80.7228 (6)0.31939 (14)0.69593 (14)0.0141 (5)
H80.85010.29710.66110.017*
N90.5374 (4)0.38247 (11)0.68120 (10)0.0128 (4)
C1'0.5393 (6)0.43227 (14)0.61535 (12)0.0139 (5)
H1'0.39710.47600.62080.017*
C2'0.8210 (6)0.46963 (14)0.59653 (13)0.0133 (5)
H2'0.96980.42760.59980.016*
C3'0.7750 (6)0.49214 (14)0.51606 (14)0.0138 (5)
H3'0.95520.50090.48920.017*
C4'0.6191 (6)0.41680 (15)0.48763 (13)0.0139 (5)
H4'0.48150.43280.44860.017*
C5'0.8164 (6)0.35258 (16)0.45686 (13)0.0188 (6)
H5'A0.71160.30190.44920.023*
H5'B0.96600.34190.49350.023*
C6'0.7305 (6)0.34328 (16)0.30226 (15)0.0219 (6)
H6'A0.73580.28430.30410.033*
H6'B0.78350.36150.25250.033*
H6'C0.54120.36200.31370.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0145 (4)0.0267 (3)0.0155 (3)0.0023 (3)0.0037 (3)0.0050 (3)
O1W0.0206 (12)0.0217 (9)0.0208 (10)0.0034 (8)0.0045 (8)0.0000 (8)
O2'0.0170 (10)0.0174 (8)0.0120 (9)0.0004 (7)0.0028 (8)0.0007 (7)
O3'0.0200 (11)0.0205 (9)0.0108 (8)0.0075 (8)0.0027 (8)0.0023 (7)
O4'0.0138 (10)0.0262 (9)0.0096 (8)0.0044 (9)0.0006 (8)0.0020 (7)
N10.0160 (12)0.0172 (10)0.0113 (10)0.0002 (8)0.0001 (9)0.0006 (8)
C20.0135 (14)0.0164 (11)0.0157 (12)0.0007 (10)0.0020 (11)0.0023 (10)
N30.0108 (11)0.0172 (9)0.0117 (11)0.0010 (8)0.0005 (9)0.0015 (9)
C40.0102 (13)0.0155 (11)0.0121 (12)0.0032 (9)0.0034 (10)0.0014 (10)
C50.0113 (14)0.0155 (10)0.0123 (11)0.0002 (10)0.0009 (11)0.0012 (9)
C60.0153 (14)0.0157 (11)0.0121 (11)0.0018 (10)0.0028 (11)0.0004 (10)
N60.0235 (15)0.0226 (10)0.0104 (10)0.0066 (10)0.0018 (10)0.0015 (9)
C70.0130 (14)0.0162 (11)0.0174 (12)0.0012 (10)0.0002 (12)0.0008 (10)
C80.0105 (14)0.0158 (11)0.0160 (13)0.0017 (10)0.0025 (11)0.0035 (10)
N90.0104 (11)0.0170 (9)0.0110 (10)0.0010 (9)0.0025 (9)0.0006 (8)
C1'0.0133 (15)0.0196 (11)0.0089 (11)0.0001 (10)0.0008 (10)0.0001 (9)
C2'0.0077 (13)0.0178 (11)0.0142 (12)0.0002 (10)0.0020 (11)0.0008 (10)
C3'0.0110 (14)0.0174 (11)0.0131 (12)0.0020 (10)0.0011 (11)0.0001 (10)
C4'0.0098 (14)0.0227 (12)0.0091 (11)0.0009 (10)0.0027 (10)0.0029 (10)
C5'0.0184 (15)0.0227 (12)0.0153 (12)0.0002 (12)0.0011 (12)0.0042 (11)
C6'0.0177 (16)0.0283 (14)0.0197 (14)0.0005 (12)0.0007 (12)0.0054 (12)
Geometric parameters (Å, º) top
S1—C6'1.808 (3)N6—H6A0.90 (3)
S1—C5'1.816 (3)N6—H6B0.82 (3)
O1W—H1A0.820 (18)C7—C81.355 (3)
O1W—H1B0.805 (18)C7—H70.9500
O2'—C2'1.410 (3)C8—N91.399 (3)
O2'—H2'O0.79 (3)C8—H80.9500
O3'—C3'1.422 (3)N9—C1'1.446 (3)
O3'—H3'O0.84 (3)C1'—C2'1.523 (4)
O4'—C1'1.436 (3)C1'—H1'1.0000
O4'—C4'1.456 (3)C2'—C3'1.514 (3)
N1—C21.341 (3)C2'—H2'1.0000
N1—C61.357 (3)C3'—C4'1.545 (3)
C2—N31.334 (3)C3'—H3'1.0000
C2—H20.9500C4'—C5'1.529 (3)
N3—C41.357 (3)C4'—H4'1.0000
C4—N91.369 (3)C5'—H5'A0.9900
C4—C51.391 (3)C5'—H5'B0.9900
C5—C61.415 (3)C6'—H6'A0.9800
C5—C71.436 (3)C6'—H6'B0.9800
C6—N61.331 (3)C6'—H6'C0.9800
C6'—S1—C5'102.20 (14)O4'—C1'—H1'109.2
H1A—O1W—H1B111 (3)N9—C1'—H1'109.2
C2'—O2'—H2'O104 (2)C2'—C1'—H1'109.2
C3'—O3'—H3'O109 (2)O2'—C2'—C3'114.53 (19)
C1'—O4'—C4'108.50 (17)O2'—C2'—C1'112.9 (2)
C2—N1—C6118.1 (2)C3'—C2'—C1'100.7 (2)
N3—C2—N1129.2 (2)O2'—C2'—H2'109.5
N3—C2—H2115.4C3'—C2'—H2'109.5
N1—C2—H2115.4C1'—C2'—H2'109.5
C2—N3—C4111.6 (2)O3'—C3'—C2'107.7 (2)
N3—C4—N9125.8 (2)O3'—C3'—C4'111.8 (2)
N3—C4—C5125.9 (2)C2'—C3'—C4'100.83 (19)
N9—C4—C5108.3 (2)O3'—C3'—H3'112.0
C4—C5—C6116.7 (2)C2'—C3'—H3'112.0
C4—C5—C7107.5 (2)C4'—C3'—H3'112.0
C6—C5—C7135.8 (2)O4'—C4'—C5'109.07 (19)
N6—C6—N1119.2 (2)O4'—C4'—C3'105.84 (19)
N6—C6—C5122.2 (2)C5'—C4'—C3'112.7 (2)
N1—C6—C5118.6 (2)O4'—C4'—H4'109.7
C6—N6—H6A122 (2)C5'—C4'—H4'109.7
C6—N6—H6B119 (2)C3'—C4'—H4'109.7
H6A—N6—H6B119 (3)C4'—C5'—S1111.59 (18)
C8—C7—C5106.4 (2)C4'—C5'—H5'A109.3
C8—C7—H7126.8S1—C5'—H5'A109.3
C5—C7—H7126.8C4'—C5'—H5'B109.3
C7—C8—N9109.9 (2)S1—C5'—H5'B109.3
C7—C8—H8125.1H5'A—C5'—H5'B108.0
N9—C8—H8125.1S1—C6'—H6'A109.5
C4—N9—C8107.91 (19)S1—C6'—H6'B109.5
C4—N9—C1'125.7 (2)H6'A—C6'—H6'B109.5
C8—N9—C1'125.5 (2)S1—C6'—H6'C109.5
O4'—C1'—N9109.66 (18)H6'A—C6'—H6'C109.5
O4'—C1'—C2'104.34 (19)H6'B—C6'—H6'C109.5
N9—C1'—C2'114.9 (2)
C6—N1—C2—N32.3 (4)C4'—O4'—C1'—N9148.2 (2)
N1—C2—N3—C42.3 (4)C4'—O4'—C1'—C2'24.6 (2)
C2—N3—C4—N9179.6 (2)C4—N9—C1'—O4'126.6 (2)
C2—N3—C4—C50.3 (3)C8—N9—C1'—O4'65.6 (3)
N3—C4—C5—C62.4 (4)C4—N9—C1'—C2'116.2 (3)
N9—C4—C5—C6178.2 (2)C8—N9—C1'—C2'51.6 (3)
N3—C4—C5—C7179.5 (2)O4'—C1'—C2'—O2'164.56 (18)
N9—C4—C5—C70.1 (3)N9—C1'—C2'—O2'75.3 (3)
C2—N1—C6—N6179.5 (2)O4'—C1'—C2'—C3'42.0 (2)
C2—N1—C6—C50.2 (3)N9—C1'—C2'—C3'162.11 (19)
C4—C5—C6—N6177.4 (2)O2'—C2'—C3'—O3'45.9 (3)
C7—C5—C6—N60.1 (5)C1'—C2'—C3'—O3'75.5 (2)
C4—C5—C6—N12.2 (3)O2'—C2'—C3'—C4'163.2 (2)
C7—C5—C6—N1179.7 (3)C1'—C2'—C3'—C4'41.8 (2)
C4—C5—C7—C80.1 (3)C1'—O4'—C4'—C5'119.1 (2)
C6—C5—C7—C8177.8 (3)C1'—O4'—C4'—C3'2.5 (2)
C5—C7—C8—N90.2 (3)O3'—C3'—C4'—O4'85.9 (2)
N3—C4—N9—C8179.4 (2)C2'—C3'—C4'—O4'28.4 (2)
C5—C4—N9—C80.0 (3)O3'—C3'—C4'—C5'155.0 (2)
N3—C4—N9—C1'11.0 (4)C2'—C3'—C4'—C5'90.8 (2)
C5—C4—N9—C1'169.5 (2)O4'—C4'—C5'—S1172.20 (16)
C7—C8—N9—C40.1 (3)C3'—C4'—C5'—S170.5 (2)
C7—C8—N9—C1'169.5 (2)C6'—S1—C5'—C4'91.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N3i0.79 (3)1.99 (3)2.776 (3)173 (3)
O1W—H1A···O30.82 (3)1.96 (3)2.748 (3)162 (3)
O1W—H1B···O2ii0.80 (3)2.07 (3)2.848 (3)162 (3)
O3—H3O···N1iii0.84 (3)1.94 (3)2.766 (3)166 (3)
N6—H6A···O1Wiv0.90 (3)2.12 (3)2.998 (3)166 (3)
N6—H6B···O1Wv0.82 (3)2.13 (3)2.928 (3)164 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1/2, y+1, z1/2; (iv) x+1/2, y+1, z+1/2; (v) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H16N4O3S·H2O
Mr314.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)4.790 (1), 16.610 (3), 18.020 (4)
V3)1433.7 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.22
Crystal size (mm)0.50 × 0.02 × 0.02
Data collection
DiffractometerRigaku Spider
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.712, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
8013, 2582, 2422
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.091, 1.08
No. of reflections2582
No. of parameters209
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.33
Absolute structureFlack (1983), 986 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: CrystalClear (Rigaku Americas, 2005), FSProcess in PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2'—H2'O···N3i0.79 (3)1.99 (3)2.776 (3)173 (3)
O1W—H1A···O3'0.82 (3)1.96 (3)2.748 (3)162 (3)
O1W—H1B···O2'ii0.80 (3)2.07 (3)2.848 (3)162 (3)
O3'—H3'O···N1iii0.84 (3)1.94 (3)2.766 (3)166 (3)
N6—H6A···O1Wiv0.90 (3)2.12 (3)2.998 (3)166 (3)
N6—H6B···O1Wv0.82 (3)2.13 (3)2.928 (3)164 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1/2, y+1, z1/2; (iv) x+1/2, y+1, z+1/2; (v) x+1, y1/2, z+3/2.
 

Acknowledgements

We thank the MacDiarmid Institute for Advanced Materials and Nanotechnology for funding of the diffractometer equipment.

References

First citationAbola, E. & Sundaralingam, M. (1973). Acta Cryst. B29, 697–703.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRiegelhaupt, P. M., Cassera, M. B., Froehlich, R. F. G., Hazelton, K. Z., Hefter, J. J., Schramm, V. L. & Akabas, M. H. (2010). Mol. Biochem. Parasitol. 169, 40–49.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSeela, F., Peng, X., Eickmeier, H. & Reuter, H. (2007). Acta Cryst. C63, o96–o98.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1688-o1689
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds