organic compounds
(4S)-4-Benzyl-N-{[(4S)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]sulfonyl}-2-oxo-1,3-oxazolidine-3-carboxamide
aLaboratoire des Chimie Organique Appliquée, Université Badji Mokhtar-Annaba, Algeria, and bLaboratoire des Structures, Propriétés et Interactions Inter Atomiques, Centre Universitaire Abbes Laghrour-Khenchela, 40000 Khenchela, Algeria
*Correspondence e-mail: benalicherif@hotmail.com
The title compound, C21H21N3O7S, contains an oxazolidinone ring and a sulfonamide group, both characteristic for biologically and pharrmaceutically active compounds. Both stereogenic centres reveal an S The two oxazolidinone rings are in an with the methylene carbon flap atoms deviating by 0.428 (1) and 0.364 (2) Å from the best least-square planes formed by the four other ring atoms. An intramolecular N—H⋯O hydrogen bond contributes to the folded conformation of the molecule. In the crystal, weak intermolecular C—H⋯O interactions connect the molecules into helices along the the twofold screw axes.
Related literature
For the biological activity of et al. (2006); Supuran et al. (2003); Kang & Reynolds (2009); Bouasla et al. (2010). For heterocyclic sulfonamide derivatives, see: Yan et al. (2007); Naganawa et al. (2006). For their use in coordination chemistry, see: King & Burgen (1976); Beloso et al. (2005). For hydrogen bonding, see: Adsmond & Grant (2001); Bernstein et al. (1995). For related structures, see: Michaux et al. (2001); Cheng et al. (2005); Benali-Cherif et al.(2002).
see: GayathriExperimental
Crystal data
|
Data collection
|
Data collection: KappaCCD Server Software (Nonius, 1998); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810020866/kp2261sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810020866/kp2261Isup2.hkl
N,N'-acylsulfonamide bis-oxazolidinones are prepared in two steps: carbamoylationand sulfamoylation, from the condensation reaction of oxazolidin-2-one derived from S-phenylalanine with chlorosulfonyl carbamate. The synthesis carried out in two steps: carbamoylation and sulfamoylation, starting from chlorosulfonyl isocyanate and α-hydroxyester.
To a stirred solution of chlorosulfonyl isocyanate (1.62 g, 11.4 mmol) in 20 ml of anhydrous CH2Cl2 at 0°C, was added dropwise 1 equivalent of -hydroxyester (1.34 g, 11.4 mmol) in 5 ml of the same of solvent. After 30 min, the carbamate was added to a solution of oxazolidinine (2.01 g, 11.4 mmol), in presence of 1.1 equivalent of triethylamine at 273 K. The reaction was stirred for less than 1 h at room temperature. The reaction mixture was washed with hydrochloride acid (0.1 N, 2x10 mL) and water (20 mL). Organic layers were dried over anhydrous magnesium sulfate, filtrated and concentrated under vacuum. The residue was purified by
on silica gel eluted by CH2Cl2 to give 17% of carboxylsulfamides and 46% of N-acylsulfonamide bis oxazolidinone as a white solid.Single crystals suitable for X-ray structure analysis could be obtained by slow evaporation of a concentrated solution in ether at room temperature.
All non-H atoms were refined with anisotropic atomic displacement parameters. H atoms were positioned with idealized geometry and refined using a riding model with C—H and N—H bond lengths constrained to 0.93–0.98 and 0.86 Å, respectively. Their isotropic displacement parameters were set equal to 1.2Ueq (parent atom). The title compound crystallizes in the non centrosymmetric
P21 and the is determined from measured Friedel opposites.Data collection: KappaCCD (Nonius, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).C21H21N3O7S | F(000) = 480 |
Mr = 459.48 | Dx = 1.431 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.4262 (3) Å | Cell parameters from 3258 reflections |
b = 9.7171 (2) Å | θ = 2.5–30.0° |
c = 10.7402 (2) Å | µ = 0.20 mm−1 |
β = 101.504 (2)° | T = 293 K |
V = 1066.26 (4) Å3 | Prism, yellow |
Z = 2 | 0.2 × 0.1 × 0.1 mm |
Nonius KappaCCD diffractometer | 3795 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.096 |
Graphite monochromator | θmax = 30.0°, θmin = 2.5° |
ω – θ scans | h = −14→12 |
17946 measured reflections | k = −9→13 |
5245 independent reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.152 | w = 1/[σ2(Fo2) + (0.0929P)2 + 0.0529P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
5245 reflections | Δρmax = 0.24 e Å−3 |
289 parameters | Δρmin = −0.47 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1981 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (8) |
C21H21N3O7S | V = 1066.26 (4) Å3 |
Mr = 459.48 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 10.4262 (3) Å | µ = 0.20 mm−1 |
b = 9.7171 (2) Å | T = 293 K |
c = 10.7402 (2) Å | 0.2 × 0.1 × 0.1 mm |
β = 101.504 (2)° |
Nonius KappaCCD diffractometer | 3795 reflections with I > 2σ(I) |
17946 measured reflections | Rint = 0.096 |
5245 independent reflections |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.152 | Δρmax = 0.24 e Å−3 |
S = 1.00 | Δρmin = −0.47 e Å−3 |
5245 reflections | Absolute structure: Flack (1983), 1981 Friedel pairs |
289 parameters | Absolute structure parameter: 0.06 (8) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.11803 (6) | 0.79846 (7) | 1.11762 (6) | 0.04863 (18) | |
N2B | 1.25586 (19) | 0.7726 (2) | 1.06927 (19) | 0.0437 (5) | |
C5B | 1.5343 (2) | 0.8050 (3) | 1.2204 (2) | 0.0487 (5) | |
O2 | 1.1209 (2) | 0.9380 (3) | 1.1528 (2) | 0.0654 (6) | |
O1B | 1.3838 (2) | 0.6678 (2) | 0.9587 (2) | 0.0627 (6) | |
O2A | 0.7466 (2) | 0.7106 (2) | 0.9147 (2) | 0.0630 (6) | |
O1A | 0.66210 (19) | 0.8112 (3) | 0.7296 (2) | 0.0747 (7) | |
O2B | 1.2389 (3) | 0.5376 (3) | 1.0322 (3) | 0.0775 (7) | |
O3 | 1.08127 (19) | 0.9126 (2) | 0.85647 (19) | 0.0569 (5) | |
O1 | 1.0989 (2) | 0.6947 (3) | 1.2046 (2) | 0.0722 (7) | |
N1A | 0.87763 (19) | 0.8226 (2) | 0.7943 (2) | 0.0471 (5) | |
C4B | 1.4444 (3) | 0.9200 (3) | 1.1659 (3) | 0.0522 (6) | |
H42B | 1.4970 | 0.9965 | 1.1468 | 0.063* | |
H41B | 1.3973 | 0.9508 | 1.2301 | 0.063* | |
C1 | 0.9943 (2) | 0.8416 (3) | 0.8803 (3) | 0.0444 (5) | |
C3B | 1.3446 (2) | 0.8833 (3) | 1.0456 (3) | 0.0482 (6) | |
H3B | 1.2943 | 0.9649 | 1.0118 | 0.058* | |
C3A | 0.8541 (3) | 0.8789 (4) | 0.6648 (3) | 0.0565 (7) | |
H3A | 0.9046 | 0.9633 | 0.6611 | 0.068* | |
C2B | 1.4016 (3) | 0.8134 (4) | 0.9414 (3) | 0.0603 (7) | |
H22B | 1.3556 | 0.8427 | 0.8581 | 0.072* | |
H21B | 1.4937 | 0.8354 | 0.9502 | 0.072* | |
C6B | 1.6509 (3) | 0.7814 (4) | 1.1794 (3) | 0.0596 (7) | |
H6B | 1.6745 | 0.8411 | 1.1201 | 0.071* | |
C1A | 0.7615 (3) | 0.7751 (3) | 0.8242 (3) | 0.0542 (7) | |
C1B | 1.2861 (3) | 0.6467 (3) | 1.0213 (3) | 0.0517 (6) | |
C5A | 1.0220 (3) | 0.7315 (3) | 0.5809 (3) | 0.0584 (7) | |
C10B | 1.5048 (3) | 0.7145 (4) | 1.3092 (3) | 0.0664 (9) | |
H10B | 1.4289 | 0.7271 | 1.3410 | 0.080* | |
C2A | 0.7090 (3) | 0.9099 (5) | 0.6474 (4) | 0.0745 (10) | |
H21A | 0.6946 | 1.0035 | 0.6729 | 0.089* | |
H22A | 0.6653 | 0.8972 | 0.5596 | 0.089* | |
C7B | 1.7327 (3) | 0.6731 (4) | 1.2235 (3) | 0.0658 (8) | |
H7B | 1.8104 | 0.6614 | 1.1947 | 0.079* | |
C4A | 0.8813 (3) | 0.7738 (5) | 0.5683 (3) | 0.0721 (9) | |
H41A | 0.8298 | 0.6921 | 0.5754 | 0.087* | |
H42A | 0.8512 | 0.8113 | 0.4839 | 0.087* | |
C6A | 1.0983 (4) | 0.7965 (5) | 0.5074 (3) | 0.0786 (10) | |
H6A | 1.0616 | 0.8640 | 0.4498 | 0.094* | |
C9B | 1.5884 (4) | 0.6031 (5) | 1.3526 (4) | 0.0823 (12) | |
H9B | 1.5669 | 0.5419 | 1.4118 | 0.099* | |
C10A | 1.0801 (5) | 0.6306 (4) | 0.6632 (4) | 0.0861 (12) | |
H10A | 1.0311 | 0.5835 | 0.7130 | 0.103* | |
C8A | 1.2831 (6) | 0.6652 (11) | 0.5994 (8) | 0.141 (3) | |
H8A | 1.3709 | 0.6431 | 0.6055 | 0.169* | |
C9A | 1.2111 (8) | 0.5991 (7) | 0.6722 (6) | 0.126 (3) | |
H9A | 1.2499 | 0.5317 | 0.7290 | 0.151* | |
C8B | 1.7004 (4) | 0.5848 (4) | 1.3079 (4) | 0.0740 (9) | |
H8B | 1.7547 | 0.5105 | 1.3360 | 0.089* | |
C7A | 1.2278 (6) | 0.7624 (8) | 0.5188 (6) | 0.118 (2) | |
H7A | 1.2780 | 0.8080 | 0.4692 | 0.141* | |
N1 | 1.0021 (2) | 0.7704 (3) | 0.9924 (2) | 0.0512 (5) | |
H1N | 0.9439 | 0.7089 | 0.9970 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0478 (3) | 0.0557 (4) | 0.0443 (3) | −0.0059 (3) | 0.0135 (2) | −0.0030 (3) |
N2B | 0.0420 (9) | 0.0395 (12) | 0.0494 (10) | −0.0003 (8) | 0.0089 (8) | −0.0003 (9) |
C5B | 0.0451 (11) | 0.0479 (14) | 0.0513 (12) | −0.0111 (12) | 0.0056 (9) | −0.0086 (13) |
O2 | 0.0560 (11) | 0.0671 (14) | 0.0769 (13) | −0.0016 (10) | 0.0222 (10) | −0.0215 (12) |
O1B | 0.0726 (13) | 0.0603 (13) | 0.0580 (11) | 0.0165 (10) | 0.0196 (10) | −0.0061 (10) |
O2A | 0.0549 (12) | 0.0544 (13) | 0.0836 (15) | −0.0101 (9) | 0.0232 (10) | −0.0051 (12) |
O1A | 0.0402 (9) | 0.0917 (18) | 0.0871 (15) | 0.0001 (11) | 0.0006 (9) | −0.0081 (15) |
O2B | 0.108 (2) | 0.0414 (12) | 0.0823 (16) | −0.0072 (12) | 0.0179 (14) | −0.0036 (11) |
O3 | 0.0456 (9) | 0.0636 (14) | 0.0597 (10) | −0.0092 (9) | 0.0065 (8) | 0.0109 (10) |
O1 | 0.0742 (14) | 0.0918 (19) | 0.0524 (11) | −0.0146 (13) | 0.0167 (10) | 0.0165 (12) |
N1A | 0.0408 (9) | 0.0505 (14) | 0.0499 (10) | −0.0014 (9) | 0.0086 (8) | −0.0058 (10) |
C4B | 0.0468 (13) | 0.0416 (14) | 0.0707 (16) | −0.0057 (11) | 0.0178 (12) | −0.0073 (13) |
C1 | 0.0430 (11) | 0.0410 (13) | 0.0496 (13) | −0.0016 (9) | 0.0101 (9) | −0.0027 (10) |
C3B | 0.0471 (12) | 0.0396 (14) | 0.0603 (15) | 0.0015 (11) | 0.0163 (11) | 0.0037 (12) |
C3A | 0.0529 (14) | 0.0639 (19) | 0.0493 (14) | 0.0022 (13) | 0.0022 (11) | −0.0019 (13) |
C2B | 0.0613 (14) | 0.067 (2) | 0.0560 (14) | 0.0092 (14) | 0.0208 (11) | 0.0117 (15) |
C6B | 0.0529 (13) | 0.068 (2) | 0.0583 (14) | 0.0038 (14) | 0.0119 (11) | −0.0068 (16) |
C1A | 0.0407 (12) | 0.0506 (17) | 0.0720 (16) | −0.0042 (11) | 0.0126 (11) | −0.0146 (15) |
C1B | 0.0633 (15) | 0.0403 (15) | 0.0494 (13) | 0.0066 (12) | 0.0066 (11) | 0.0001 (11) |
C5A | 0.0730 (18) | 0.0586 (18) | 0.0410 (12) | 0.0076 (14) | 0.0054 (12) | −0.0115 (12) |
C10B | 0.0473 (15) | 0.087 (2) | 0.0632 (17) | −0.0144 (15) | 0.0069 (12) | 0.0109 (17) |
C2A | 0.0508 (15) | 0.094 (3) | 0.0736 (19) | 0.0098 (16) | −0.0006 (13) | 0.002 (2) |
C7B | 0.0561 (16) | 0.075 (2) | 0.0647 (17) | 0.0071 (15) | 0.0077 (13) | −0.0119 (17) |
C4A | 0.0688 (18) | 0.092 (3) | 0.0518 (14) | −0.0020 (18) | 0.0033 (12) | −0.0188 (18) |
C6A | 0.094 (2) | 0.086 (3) | 0.0620 (16) | 0.011 (2) | 0.0306 (16) | −0.006 (2) |
C9B | 0.077 (2) | 0.086 (3) | 0.077 (2) | −0.018 (2) | −0.0017 (18) | 0.026 (2) |
C10A | 0.127 (4) | 0.063 (2) | 0.064 (2) | 0.019 (2) | 0.008 (2) | −0.0088 (17) |
C8A | 0.093 (4) | 0.196 (7) | 0.121 (4) | 0.063 (4) | −0.008 (3) | −0.095 (5) |
C9A | 0.157 (5) | 0.112 (4) | 0.090 (3) | 0.081 (4) | −0.022 (4) | −0.032 (3) |
C8B | 0.0590 (17) | 0.071 (2) | 0.082 (2) | −0.0021 (16) | −0.0105 (15) | −0.0031 (19) |
C7A | 0.101 (3) | 0.141 (5) | 0.125 (4) | 0.003 (4) | 0.058 (3) | −0.048 (4) |
N1 | 0.0451 (11) | 0.0539 (14) | 0.0544 (11) | −0.0113 (10) | 0.0092 (8) | 0.0035 (11) |
S1—O2 | 1.407 (2) | C2B—H22B | 0.9700 |
S1—O1 | 1.416 (2) | C2B—H21B | 0.9700 |
S1—N2B | 1.642 (2) | C6B—C7B | 1.378 (5) |
S1—N1 | 1.642 (2) | C6B—H6B | 0.9300 |
N2B—C1B | 1.389 (4) | C5A—C10A | 1.377 (5) |
N2B—C3B | 1.473 (3) | C5A—C6A | 1.380 (5) |
C5B—C10B | 1.377 (4) | C5A—C4A | 1.503 (5) |
C5B—C6B | 1.392 (4) | C10B—C9B | 1.410 (6) |
C5B—C4B | 1.501 (4) | C10B—H10B | 0.9300 |
O1B—C1B | 1.343 (4) | C2A—H21A | 0.9700 |
O1B—C2B | 1.444 (4) | C2A—H22A | 0.9700 |
O2A—C1A | 1.192 (4) | C7B—C8B | 1.339 (6) |
O1A—C1A | 1.345 (4) | C7B—H7B | 0.9300 |
O1A—C2A | 1.453 (5) | C4A—H41A | 0.9700 |
O2B—C1B | 1.184 (4) | C4A—H42A | 0.9700 |
O3—C1 | 1.207 (3) | C6A—C7A | 1.372 (7) |
N1A—C1 | 1.385 (3) | C6A—H6A | 0.9300 |
N1A—C1A | 1.392 (4) | C9B—C8B | 1.360 (6) |
N1A—C3A | 1.470 (4) | C9B—H9B | 0.9300 |
C4B—C3B | 1.531 (4) | C10A—C9A | 1.384 (9) |
C4B—H42B | 0.9700 | C10A—H10A | 0.9300 |
C4B—H41B | 0.9700 | C8A—C7A | 1.332 (12) |
C1—N1 | 1.377 (4) | C8A—C9A | 1.350 (11) |
C3B—C2B | 1.526 (4) | C8A—H8A | 0.9300 |
C3B—H3B | 0.9800 | C9A—H9A | 0.9300 |
C3A—C2A | 1.517 (4) | C8B—H8B | 0.9300 |
C3A—C4A | 1.521 (5) | C7A—H7A | 0.9300 |
C3A—H3A | 0.9800 | N1—H1N | 0.8600 |
O2—S1—O1 | 120.50 (16) | O1A—C1A—N1A | 108.3 (3) |
O2—S1—N2B | 105.02 (12) | O2B—C1B—O1B | 123.9 (3) |
O1—S1—N2B | 110.32 (14) | O2B—C1B—N2B | 128.5 (3) |
O2—S1—N1 | 110.68 (14) | O1B—C1B—N2B | 107.6 (2) |
O1—S1—N1 | 104.18 (13) | C10A—C5A—C6A | 117.6 (4) |
N2B—S1—N1 | 105.28 (12) | C10A—C5A—C4A | 123.3 (4) |
C1B—N2B—C3B | 112.4 (2) | C6A—C5A—C4A | 119.1 (3) |
C1B—N2B—S1 | 122.03 (19) | C5B—C10B—C9B | 120.7 (3) |
C3B—N2B—S1 | 124.24 (18) | C5B—C10B—H10B | 119.7 |
C10B—C5B—C6B | 116.4 (3) | C9B—C10B—H10B | 119.7 |
C10B—C5B—C4B | 122.5 (3) | O1A—C2A—C3A | 104.0 (3) |
C6B—C5B—C4B | 121.1 (3) | O1A—C2A—H21A | 110.9 |
C1B—O1B—C2B | 110.1 (2) | C3A—C2A—H21A | 110.9 |
C1A—O1A—C2A | 109.2 (2) | O1A—C2A—H22A | 110.9 |
C1—N1A—C1A | 125.4 (2) | C3A—C2A—H22A | 110.9 |
C1—N1A—C3A | 122.7 (2) | H21A—C2A—H22A | 109.0 |
C1A—N1A—C3A | 110.7 (2) | C8B—C7B—C6B | 120.0 (3) |
C5B—C4B—C3B | 115.0 (2) | C8B—C7B—H7B | 120.0 |
C5B—C4B—H42B | 108.5 | C6B—C7B—H7B | 120.0 |
C3B—C4B—H42B | 108.5 | C5A—C4A—C3A | 115.7 (2) |
C5B—C4B—H41B | 108.5 | C5A—C4A—H41A | 108.3 |
C3B—C4B—H41B | 108.5 | C3A—C4A—H41A | 108.3 |
H42B—C4B—H41B | 107.5 | C5A—C4A—H42A | 108.3 |
O3—C1—N1 | 123.8 (2) | C3A—C4A—H42A | 108.3 |
O3—C1—N1A | 122.1 (2) | H41A—C4A—H42A | 107.4 |
N1—C1—N1A | 114.0 (2) | C7A—C6A—C5A | 120.5 (5) |
N2B—C3B—C2B | 98.7 (2) | C7A—C6A—H6A | 119.7 |
N2B—C3B—C4B | 111.6 (2) | C5A—C6A—H6A | 119.7 |
C2B—C3B—C4B | 115.1 (2) | C8B—C9B—C10B | 120.1 (4) |
N2B—C3B—H3B | 110.3 | C8B—C9B—H9B | 119.9 |
C2B—C3B—H3B | 110.3 | C10B—C9B—H9B | 119.9 |
C4B—C3B—H3B | 110.3 | C5A—C10A—C9A | 120.3 (5) |
N1A—C3A—C2A | 99.5 (3) | C5A—C10A—H10A | 119.9 |
N1A—C3A—C4A | 112.1 (3) | C9A—C10A—H10A | 119.9 |
C2A—C3A—C4A | 111.5 (3) | C7A—C8A—C9A | 119.7 (5) |
N1A—C3A—H3A | 111.1 | C7A—C8A—H8A | 120.1 |
C2A—C3A—H3A | 111.1 | C9A—C8A—H8A | 120.1 |
C4A—C3A—H3A | 111.1 | C8A—C9A—C10A | 120.6 (5) |
O1B—C2B—C3B | 105.3 (2) | C8A—C9A—H9A | 119.7 |
O1B—C2B—H22B | 110.7 | C10A—C9A—H9A | 119.7 |
C3B—C2B—H22B | 110.7 | C7B—C8B—C9B | 120.3 (4) |
O1B—C2B—H21B | 110.7 | C7B—C8B—H8B | 119.8 |
C3B—C2B—H21B | 110.7 | C9B—C8B—H8B | 119.8 |
H22B—C2B—H21B | 108.8 | C8A—C7A—C6A | 121.3 (6) |
C7B—C6B—C5B | 122.5 (3) | C8A—C7A—H7A | 119.4 |
C7B—C6B—H6B | 118.8 | C6A—C7A—H7A | 119.4 |
C5B—C6B—H6B | 118.8 | C1—N1—S1 | 122.56 (18) |
O2A—C1A—O1A | 123.1 (3) | C1—N1—H1N | 118.7 |
O2A—C1A—N1A | 128.5 (3) | S1—N1—H1N | 118.7 |
O2—S1—N2B—C1B | −177.2 (2) | C2B—O1B—C1B—O2B | 168.8 (3) |
O1—S1—N2B—C1B | 51.6 (2) | C2B—O1B—C1B—N2B | −12.0 (3) |
N1—S1—N2B—C1B | −60.3 (2) | C3B—N2B—C1B—O2B | 174.7 (3) |
O2—S1—N2B—C3B | −11.1 (2) | S1—N2B—C1B—O2B | −17.8 (4) |
O1—S1—N2B—C3B | −142.4 (2) | C3B—N2B—C1B—O1B | −4.4 (3) |
N1—S1—N2B—C3B | 105.8 (2) | S1—N2B—C1B—O1B | 163.15 (18) |
C10B—C5B—C4B—C3B | −90.1 (3) | C6B—C5B—C10B—C9B | −1.4 (4) |
C6B—C5B—C4B—C3B | 87.5 (3) | C4B—C5B—C10B—C9B | 176.3 (3) |
C1A—N1A—C1—O3 | −161.7 (3) | C1A—O1A—C2A—C3A | 26.0 (4) |
C3A—N1A—C1—O3 | 4.4 (4) | N1A—C3A—C2A—O1A | −27.6 (3) |
C1A—N1A—C1—N1 | 19.6 (4) | C4A—C3A—C2A—O1A | 90.8 (3) |
C3A—N1A—C1—N1 | −174.3 (3) | C5B—C6B—C7B—C8B | 0.8 (5) |
C1B—N2B—C3B—C2B | 17.2 (3) | C10A—C5A—C4A—C3A | 83.9 (5) |
S1—N2B—C3B—C2B | −149.98 (19) | C6A—C5A—C4A—C3A | −95.7 (4) |
C1B—N2B—C3B—C4B | −104.3 (3) | N1A—C3A—C4A—C5A | −67.1 (4) |
S1—N2B—C3B—C4B | 88.5 (2) | C2A—C3A—C4A—C5A | −177.6 (3) |
C5B—C4B—C3B—N2B | 61.6 (3) | C10A—C5A—C6A—C7A | −1.1 (6) |
C5B—C4B—C3B—C2B | −49.9 (3) | C4A—C5A—C6A—C7A | 178.5 (4) |
C1—N1A—C3A—C2A | −146.0 (3) | C5B—C10B—C9B—C8B | 0.8 (6) |
C1A—N1A—C3A—C2A | 21.9 (3) | C6A—C5A—C10A—C9A | 1.2 (6) |
C1—N1A—C3A—C4A | 96.0 (3) | C4A—C5A—C10A—C9A | −178.4 (4) |
C1A—N1A—C3A—C4A | −96.0 (3) | C7A—C8A—C9A—C10A | 0.5 (9) |
C1B—O1B—C2B—C3B | 23.0 (3) | C5A—C10A—C9A—C8A | −0.9 (7) |
N2B—C3B—C2B—O1B | −22.9 (3) | C6B—C7B—C8B—C9B | −1.5 (5) |
C4B—C3B—C2B—O1B | 96.0 (3) | C10B—C9B—C8B—C7B | 0.7 (6) |
C10B—C5B—C6B—C7B | 0.7 (4) | C9A—C8A—C7A—C6A | −0.4 (9) |
C4B—C5B—C6B—C7B | −177.1 (3) | C5A—C6A—C7A—C8A | 0.7 (8) |
C2A—O1A—C1A—O2A | 169.2 (3) | O3—C1—N1—S1 | 12.8 (4) |
C2A—O1A—C1A—N1A | −12.2 (3) | N1A—C1—N1—S1 | −168.52 (19) |
C1—N1A—C1A—O2A | −21.2 (5) | O2—S1—N1—C1 | 55.7 (3) |
C3A—N1A—C1A—O2A | 171.2 (3) | O1—S1—N1—C1 | −173.4 (2) |
C1—N1A—C1A—O1A | 160.3 (3) | N2B—S1—N1—C1 | −57.3 (3) |
C3A—N1A—C1A—O1A | −7.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2A | 0.86 | 2.07 | 2.691 (3) | 128 (1) |
C3B—H3B···O2Ai | 0.98 | 2.58 | 3.372 (4) | 138 (1) |
C4B—H42B···O1Bii | 0.97 | 2.48 | 3.428 (4) | 165 (1) |
Symmetry codes: (i) −x+2, y+1/2, −z+2; (ii) −x+3, y+1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C21H21N3O7S |
Mr | 459.48 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 10.4262 (3), 9.7171 (2), 10.7402 (2) |
β (°) | 101.504 (2) |
V (Å3) | 1066.26 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.20 |
Crystal size (mm) | 0.2 × 0.1 × 0.1 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17946, 5245, 3795 |
Rint | 0.096 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.152, 1.00 |
No. of reflections | 5245 |
No. of parameters | 289 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.47 |
Absolute structure | Flack (1983), 1981 Friedel pairs |
Absolute structure parameter | 0.06 (8) |
Computer programs: KappaCCD (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2A | 0.860 | 2.070 | 2.691 (3) | 128.00 (17) |
C3B—H3B···O2Ai | 0.980 | 2.580 | 3.372 (4) | 138.24 (17) |
C4B—H42B···O1Bii | 0.970 | 2.477 | 3.428 (4) | 165.12 (17) |
Symmetry codes: (i) −x+2, y+1/2, −z+2; (ii) −x+3, y+1/2, −z+2. |
Acknowledgements
We wish to thank Dr M. Giorgi, Faculté des Sciences et Techniques de Saint Jérome, Marseilles, France, for providing diffraction facilities, and the DG-RSDT and the Centre Universitaire `Abbes Laghrour'- Khenchela, Algeria for financial support.
References
Adsmond, D. A. & Grant, D. J. W. J. (2001). Pharm. Sci. 90, 2058–2077. Web of Science CrossRef CAS Google Scholar
Beloso, I., Castro, J., Garcia-Vazquesz, J. A., Perez-Lourido, P., Romero, J. & Sousa, A. (2005). Inorg. Chem. 44, 336–351. Web of Science CSD CrossRef PubMed CAS Google Scholar
Benali-Cherif, N., Dokhane, S. & Abdaoui, M. (2002). Acta Cryst. E58, o723–o725. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bouasla, R., Berredjem, M., Allaoui, A., Berredjem, H., Lecouvey, M. & Aouf, N. (2010). J. Heterocycl. Chem. In the press. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cheng, J.-L., Tan, C.-X. & Zhu, G.-N. (2005). Acta Cryst. E61, o3194–o3195. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gayathri, D., Velmurugan, D., Ravikumar, K., Poornachandran, M. & Raghunathan, R. (2006). Acta Cryst. E62, o4454–o4455. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kang, M. H. & Reynolds, C. P. (2009). Clin. Cancer Res. 15, 1126–1132. Web of Science CrossRef PubMed CAS Google Scholar
King, R. W. & Burgen, A. S. V. (1976). Proc. R. Soc. London Sect. B, 193, 107–125. CrossRef CAS Web of Science Google Scholar
Michaux, C., Charlier, C., Julémont, F., Norberg, B., Dogné, J.-M. & Durant, F. (2001). Acta Cryst. E57, o1012–o1013. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naganawa, A., Matsui, T., Ima, M., Yoshida, K., Tsuruta, H., Yamamoto, S., Yamamoto, H., Okada, H., Maruyama, T., Nakai, H., Kondo, K. & Toda, M. (2006). Bioorg. Med. Chem. 14, 7774–7789. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology , Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535–558. Web of Science CrossRef PubMed CAS Google Scholar
Yan, X.-W., Hu, M.-L. & Xiong, J. (2007). Acta Cryst. E63, o678–o679. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sulfonamides constitute an important class of biologically active compounds and have several pharmaceutical applications for a variety of diseases because of their potential pharmacological activities such as antimalarial, antibacterial diuretic, hypoglycaemic, antigermicidal(Gayathri et al., 2006;) and antitumoral (Supuran et al. , 2003).
N-Acylsulfonamide is an important functional group in organic chemistry and is present in many biologically active molecules. They has been incorporated into tested drugs and therapeutic agents for Alzheimer's disease, bacterial infection, osteoporolysis, and cancer (Kang et al. , 2009). Recently, it was reported on the in vitro activity of acylsulfonamide bis-oxazolidinone against the virulent strain RH of Toxoplasma gondii and the human lymphocytes (Bouasla et al., 2010).
Those compounds have also been useful in studies of the physical chemistry and the mechanism of action of carbonic anhydrase because of their highly specific interaction with the active site (King & Burgen, 1976). Moreover, sulfonamides containing different donor atoms find use in coordination chemistry (Beloso et al. , 2005). They are also very interesting for studying hydrogen-bonding interactions (Adsmond & Grant, 2001).
Recently, many new heterocyclic sulfonamide derivatives have been synthesised (Yan et al., 2007) and some of them have been optimized as highly selective EP1 receptor antagonists (Naganawa et al., 2006). We report here the molecular structure of a new heterocyclic sulfonamide, (I), derived from R-phenyl alanine which was prepared in order to investigate its potential clinical application.
In the molecule C21H21N3O7S, (Fig. 1), the distances and angles around the sulfonamide group are within the expected range of values found in similar structures (Michaux et al. , 2001).
The S—O bond lengths observed are shorter in C21H21N3O7S [1.411 (2) Å] than in C23H36N4O8S2 [1.443 (3) Å] (Caira et al., 1993) and C16H19BrN2O2S [1.432 (4) Å] (Benali-Cherif et al., 2002)suggesting that electronic delocalization is less important for the O atoms of the sulfonamide group in (I) than in the other sulfonamide derivatives. The geometric parameters of the oxazolidinone rings are in a good agreement with those reported in previous similar studies (Cheng et al. , 2005). The non-planarity of the heterocyclic rings is evidenced by the torsion angles of -12.0 (3)° and -12.2 (3)° for C2B—O1B—C1B—N2B and C2A—O1A—C1A—N1A, respectively.
The molecular structure is stabilized by an intramolecular N—H···O hydrogen-bond interaction (Fig. 2) involving the NH group and the carbonyl O atom. In the crystal packing (Fig. 3), molecules are linked by infinite chains of C—H···O hydrogen-bonds (Table 1) running parallel to the b axis and generating a C(9) graph-set motif (Bernstein et al., 1995).