organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1-Phenyl-1H-1,2,3-triazol-4-yl)methyl pyridine-3-carboxyl­ate

aTashkent Institute of Irrigation and Melioration, Qori-Niyoziy Str. 39, Tashkent 100000, Uzbekistan, bAndijan State University, Universitetskaja str. 129, Andijan 170100, Uzbekistan, cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str,83, Tashkent 100125, Uzbekistan, and dS.Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: zokir_k@mail.ru

(Received 19 May 2010; accepted 8 June 2010; online 16 June 2010)

In the title compound, C15H12N4O2, the dihedral angle between the planes of the nicotino­yloxy fragment and triazole ring is 88.61 (5)°. The dihedral angle between the planes of triazole and benzene rings is 16.54 (11)°. The crystal structure is stabilized by inter­molecular C—H⋯N, C—H⋯O and C—H⋯π(triazole) hydrogen bonds and aromatic ππ stacking inter­actions between the benzene and triazole rings [centroid–centroid distance = 3.895 (1) Å]

Related literature

For the synthesis of 1,2,3-triazole derivatives, see: Berestovitskaya et al. (2007[Berestovitskaya, V. M., Anisimova, N. A., Kataeva, O. N., Makarova, N. G. & Berkova, G. A. (2007). Russ. J. Gen. Chem. 77, 1567-1575.]); Piterskaya et al. (1996a[Piterskaya, Yu. L., Khramchikhin, A. V., Stadnichuk, M. D., Bel'sky, V. K. & Stash, A. I. (1996a). Russ. J. Gen. Chem. 66, 1150-1957.],b[Piterskaya, Yu. L., Khramchikhin, A. V. & Stadnichuk, M. D. (1996b). Russ. J. Gen. Chem. 66, 1158-1165.]). For their physiological activity, see: Contreras et al. (1978[Contreras, A., Sánchez-Pérez, R. M. & Alonso, G. (1978). Cancer Chemother. Pharmacol. 1, 243-247.]). For related structures, see: Berestovitskaya et al. (2007[Berestovitskaya, V. M., Anisimova, N. A., Kataeva, O. N., Makarova, N. G. & Berkova, G. A. (2007). Russ. J. Gen. Chem. 77, 1567-1575.]); Monkowius et al. (2007[Monkowius, U., Ritter, S., Konig, B., Zabel, M. & Yersin, H. (2007). Eur. J. Inorg. Chem. pp. 4597-4606.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N4O2

  • Mr = 280.29

  • Monoclinic, P 21 /n

  • a = 5.5178 (5) Å

  • b = 23.650 (2) Å

  • c = 10.287 (2) Å

  • β = 91.841 (14)°

  • V = 1341.8 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 293 K

  • 0.70 × 0.45 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.674, Tmax = 1.000

  • 4791 measured reflections

  • 2460 independent reflections

  • 1877 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.04

  • 2460 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the triazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N1i 0.93 2.64 3.550 (3) 165
C2—H2⋯O1ii 0.93 2.71 3.464 (2) 139
C15—H15⋯O1iii 0.93 2.68 3.559 (2) 158
C7—H7a⋯Cg1iv 0.97 2.92 3.313 (2) 106
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+1; (iv) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Triazole derivatives possess different biological activities (Contreras et al. 1978). The title compound was synthesized with purpose of finding of a potential biological active compound.

The asymmetric unit contains one molecule of 1-phenyl-4-(nicotinoyloxymethyl)-1,2,3-triazole (Fig. 1). In the molecule nicotinoyloxy, phenyl groups and triazole system are planar, with r.m.s. deviations of 0.0075, 0.0048 and 0.0028 Å, respectively. Nicotinoyloxy fragment arranged nearly perpendicular to triazole ring. The angle between the planes of the nicotinoyloxy fragment and triazole ring is 88.61 (5)°. The angle between the planes of triazole and benzene rings is 16.54 (11)°. The observed structure is stabilized by C—H···N, C—H···O and C—H···π (triazole) type hydrogen bonds (Table 1) and aromatic ππ stacking interactions. A centrosymmetric ππ stacking interactions are observed between triazole group and benzene group of molecules at x,y,z and 1 - x, -y, 2 - z where the ring-centroid separation is 3.895 (1) Å, triazole centroid distance to benzene plane is 3.429 (1) Å with ring offset of 1.847 (1) Å (Fig. 2). The bond distances and angles in molecule are in normal ranges (Allen et al., 1987).

Related literature top

For the synthesis of 1,2,3-triazole derivatives, see: Berestovitskaya et al. (2007); Piterskaya et al. (1996a,b). For their physiological activity, see: Contreras et al. (1978). For related structures, see: Berestovitskaya et al. (2007); Monkowius et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

Mixture of 3-(nicotinoyloxy)-1-propyne (1.61 g, 0,01 mole) and fresh prepared phenylazide (1.310 g, 0,011 mole) in 30 ml toluen was heated with a backflow condenser for 6 h. Then it was cooled and precipitate were isolated by decantation. Obtained crystals were washed with ether and re-crystallized from toluen. It was obtained 78.3% yeild (2.19 g) of title compound, m.p. 96–97° C, Rf =0.53 (ether-hexane 9:1). Colorless crystals suitable for X-ray analysis were obtained from acetone by slow evaporation.

Refinement top

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and were refined with Uiso(H) =1.2Ueq(C)]. All other non-H atoms were refined anisotropically.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot at the 50% probability level for the non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure showing a ππ stacking interactions observed between triazole and triazole rings.
(1-Phenyl-1H-1,2,3-triazol-4-yl)methyl pyridine-3-carboxylate top
Crystal data top
C15H12N4O2F(000) = 584
Mr = 280.29Dx = 1.388 Mg m3
Monoclinic, P21/nMelting point: 370(2) K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.5418 Å
a = 5.5178 (5) ÅCell parameters from 2409 reflections
b = 23.650 (2) Åθ = 3.6–70.6°
c = 10.287 (2) ŵ = 0.79 mm1
β = 91.841 (14)°T = 293 K
V = 1341.8 (3) Å3Prism, colourless
Z = 40.70 × 0.45 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2460 independent reflections
Radiation source: Enhance (Cu) X-ray Source1877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.2576 pixels mm-1θmax = 70.8°, θmin = 3.7°
ω scansh = 65
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2228
Tmin = 0.674, Tmax = 1.000l = 127
4791 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.039P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.009
2460 reflectionsΔρmax = 0.18 e Å3
191 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0116 (12)
Crystal data top
C15H12N4O2V = 1341.8 (3) Å3
Mr = 280.29Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.5178 (5) ŵ = 0.79 mm1
b = 23.650 (2) ÅT = 293 K
c = 10.287 (2) Å0.70 × 0.45 × 0.10 mm
β = 91.841 (14)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2460 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1877 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 1.000Rint = 0.026
4791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2460 reflectionsΔρmin = 0.13 e Å3
191 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.40 (release 27-04-2009 CrysAlis171 .NET) (compiled Apr 27 2009,10:20:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0509 (3)0.12524 (6)0.39435 (11)0.0714 (4)
O20.8540 (2)0.11948 (5)0.58047 (11)0.0523 (3)
N11.4934 (3)0.25199 (7)0.54437 (16)0.0742 (5)
N20.3515 (3)0.05484 (6)0.64902 (15)0.0623 (4)
N30.2755 (2)0.02085 (7)0.73956 (15)0.0594 (4)
N40.4631 (2)0.01361 (5)0.77328 (12)0.0462 (3)
C11.3474 (4)0.21113 (8)0.49855 (17)0.0633 (5)
H11.36990.19840.41430.076*
C21.4557 (4)0.26924 (9)0.66483 (19)0.0704 (5)
H21.55310.29810.69870.084*
C31.2820 (4)0.24710 (8)0.74223 (17)0.0666 (5)
H31.26480.26030.82650.080*
C41.1335 (3)0.20495 (8)0.69328 (16)0.0582 (5)
H41.01410.18920.74370.070*
C51.1658 (3)0.18666 (7)0.56780 (15)0.0485 (4)
C61.0211 (3)0.14094 (7)0.50420 (15)0.0503 (4)
C70.7195 (3)0.07246 (8)0.52359 (16)0.0600 (5)
H7A0.83040.04640.48360.072*
H7B0.60660.08630.45670.072*
C80.5854 (3)0.04295 (7)0.62530 (15)0.0505 (4)
C90.6565 (3)0.00074 (7)0.70339 (15)0.0498 (4)
H90.80780.01810.70750.060*
C100.4351 (3)0.05578 (7)0.87124 (15)0.0462 (4)
C110.2462 (3)0.05189 (8)0.95377 (18)0.0613 (5)
H110.13490.02250.94420.074*
C120.2202 (3)0.09122 (9)1.05070 (19)0.0679 (5)
H120.09030.08881.10590.082*
C130.3853 (4)0.13394 (9)1.0659 (2)0.0698 (5)
H130.36970.16031.13230.084*
C140.5740 (4)0.13789 (10)0.9831 (2)0.0789 (6)
H140.68600.16710.99340.095*
C150.5996 (3)0.09893 (9)0.88416 (19)0.0671 (5)
H150.72660.10200.82730.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0949 (10)0.0714 (9)0.0485 (7)0.0203 (7)0.0127 (6)0.0026 (6)
O20.0533 (6)0.0509 (7)0.0531 (6)0.0076 (5)0.0077 (5)0.0050 (5)
N10.0808 (11)0.0768 (11)0.0660 (10)0.0296 (9)0.0194 (8)0.0046 (8)
N20.0544 (8)0.0561 (9)0.0766 (10)0.0028 (7)0.0042 (7)0.0052 (8)
N30.0433 (7)0.0591 (9)0.0761 (10)0.0071 (7)0.0071 (7)0.0038 (8)
N40.0375 (6)0.0472 (7)0.0540 (7)0.0014 (6)0.0038 (5)0.0059 (6)
C10.0727 (11)0.0645 (11)0.0532 (10)0.0148 (10)0.0140 (9)0.0010 (8)
C20.0777 (13)0.0669 (12)0.0670 (11)0.0241 (10)0.0087 (10)0.0064 (10)
C30.0748 (12)0.0681 (12)0.0577 (11)0.0128 (10)0.0123 (9)0.0138 (9)
C40.0587 (10)0.0604 (11)0.0565 (10)0.0068 (8)0.0168 (8)0.0006 (8)
C50.0505 (8)0.0460 (9)0.0493 (8)0.0009 (7)0.0054 (7)0.0033 (7)
C60.0565 (9)0.0480 (9)0.0465 (9)0.0006 (8)0.0057 (7)0.0053 (7)
C70.0680 (11)0.0559 (10)0.0562 (10)0.0140 (9)0.0022 (8)0.0067 (8)
C80.0489 (8)0.0488 (9)0.0538 (9)0.0055 (7)0.0013 (7)0.0095 (7)
C90.0386 (7)0.0567 (10)0.0543 (9)0.0003 (7)0.0054 (7)0.0045 (8)
C100.0418 (7)0.0460 (8)0.0511 (8)0.0025 (7)0.0053 (6)0.0076 (7)
C110.0521 (9)0.0629 (11)0.0699 (11)0.0067 (8)0.0157 (8)0.0027 (9)
C120.0606 (10)0.0772 (13)0.0673 (12)0.0039 (10)0.0221 (9)0.0022 (10)
C130.0723 (12)0.0686 (13)0.0693 (12)0.0005 (10)0.0130 (10)0.0088 (10)
C140.0784 (13)0.0700 (13)0.0899 (15)0.0212 (11)0.0255 (11)0.0180 (11)
C150.0612 (10)0.0679 (12)0.0738 (12)0.0135 (10)0.0261 (9)0.0072 (10)
Geometric parameters (Å, º) top
O1—C61.2059 (19)C5—C61.484 (2)
O2—C61.3301 (19)C7—C81.476 (2)
O2—C71.450 (2)C7—H7A0.9700
N1—C21.327 (2)C7—H7B0.9700
N1—C11.334 (2)C8—C91.359 (2)
N2—N31.309 (2)C9—H90.9300
N2—C81.351 (2)C10—C111.369 (2)
N3—N41.3536 (18)C10—C151.369 (2)
N4—C91.3409 (19)C11—C121.375 (3)
N4—C101.430 (2)C11—H110.9300
C1—C51.376 (2)C12—C131.366 (3)
C1—H10.9300C12—H120.9300
C2—C31.369 (3)C13—C141.369 (3)
C2—H20.9300C13—H130.9300
C3—C41.375 (2)C14—C151.383 (3)
C3—H30.9300C14—H140.9300
C4—C51.378 (2)C15—H150.9300
C4—H40.9300
C6—O2—C7114.22 (13)O2—C7—H7B109.7
C2—N1—C1116.19 (16)C8—C7—H7B109.7
N3—N2—C8109.28 (14)H7A—C7—H7B108.2
N2—N3—N4107.01 (13)N2—C8—C9108.11 (15)
C9—N4—N3109.94 (14)N2—C8—C7122.22 (16)
C9—N4—C10129.94 (13)C9—C8—C7129.55 (16)
N3—N4—C10120.13 (13)N4—C9—C8105.66 (14)
N1—C1—C5124.29 (17)N4—C9—H9127.2
N1—C1—H1117.9C8—C9—H9127.2
C5—C1—H1117.9C11—C10—C15120.38 (17)
N1—C2—C3123.98 (18)C11—C10—N4119.46 (15)
N1—C2—H2118.0C15—C10—N4120.15 (15)
C3—C2—H2118.0C10—C11—C12120.25 (17)
C2—C3—C4118.94 (17)C10—C11—H11119.9
C2—C3—H3120.5C12—C11—H11119.9
C4—C3—H3120.5C13—C12—C11119.91 (18)
C3—C4—C5118.49 (16)C13—C12—H12120.0
C3—C4—H4120.8C11—C12—H12120.0
C5—C4—H4120.8C12—C13—C14119.8 (2)
C1—C5—C4118.09 (16)C12—C13—H13120.1
C1—C5—C6117.97 (15)C14—C13—H13120.1
C4—C5—C6123.91 (15)C13—C14—C15120.7 (2)
O1—C6—O2123.60 (16)C13—C14—H14119.7
O1—C6—C5123.36 (16)C15—C14—H14119.7
O2—C6—C5113.04 (14)C10—C15—C14119.00 (17)
O2—C7—C8109.78 (13)C10—C15—H15120.5
O2—C7—H7A109.7C14—C15—H15120.5
C8—C7—H7A109.7
C8—N2—N3—N40.57 (18)N3—N2—C8—C7177.18 (14)
N2—N3—N4—C90.18 (18)O2—C7—C8—N294.82 (18)
N2—N3—N4—C10179.94 (13)O2—C7—C8—C989.6 (2)
C2—N1—C1—C50.2 (3)N3—N4—C9—C80.28 (18)
C1—N1—C2—C31.1 (3)C10—N4—C9—C8179.45 (15)
N1—C2—C3—C41.0 (3)N2—C8—C9—N40.62 (17)
C2—C3—C4—C50.0 (3)C7—C8—C9—N4176.70 (15)
N1—C1—C5—C40.8 (3)C9—N4—C10—C11162.57 (16)
N1—C1—C5—C6178.98 (18)N3—N4—C10—C1117.1 (2)
C3—C4—C5—C10.8 (3)C9—N4—C10—C1515.9 (3)
C3—C4—C5—C6178.92 (16)N3—N4—C10—C15164.39 (16)
C7—O2—C6—O14.0 (2)C15—C10—C11—C120.2 (3)
C7—O2—C6—C5176.54 (14)N4—C10—C11—C12178.28 (16)
C1—C5—C6—O11.8 (3)C10—C11—C12—C130.9 (3)
C4—C5—C6—O1179.94 (17)C11—C12—C13—C141.0 (3)
C1—C5—C6—O2178.69 (15)C12—C13—C14—C150.2 (3)
C4—C5—C6—O20.6 (2)C11—C10—C15—C141.1 (3)
C6—O2—C7—C8165.90 (14)N4—C10—C15—C14177.40 (17)
N3—N2—C8—C90.76 (18)C13—C14—C15—C100.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the triazole ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···N1i0.932.643.550 (3)165
C2—H2···O1ii0.932.713.464 (2)139
C15—H15···O1iii0.932.683.559 (2)158
C7—H7a···Cg1iv0.972.923.313 (2)106
Symmetry codes: (i) x+5/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H12N4O2
Mr280.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.5178 (5), 23.650 (2), 10.287 (2)
β (°) 91.841 (14)
V3)1341.8 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.70 × 0.45 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.674, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4791, 2460, 1877
Rint0.026
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.04
No. of reflections2460
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the triazole ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···N1i0.932.6443.550 (3)165
C2—H2···O1ii0.932.7093.464 (2)139
C15—H15···O1iii0.932.6813.559 (2)158
C7—H7a···Cg1iv0.972.9173.313 (2)106
Symmetry codes: (i) x+5/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

Tashkent Institute of Irrigation and Melioration is thanked for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBerestovitskaya, V. M., Anisimova, N. A., Kataeva, O. N., Makarova, N. G. & Berkova, G. A. (2007). Russ. J. Gen. Chem. 77, 1567–1575.  Web of Science CrossRef CAS Google Scholar
First citationContreras, A., Sánchez-Pérez, R. M. & Alonso, G. (1978). Cancer Chemother. Pharmacol. 1, 243–247.  CrossRef CAS PubMed Google Scholar
First citationMonkowius, U., Ritter, S., Konig, B., Zabel, M. & Yersin, H. (2007). Eur. J. Inorg. Chem. pp. 4597–4606.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPiterskaya, Yu. L., Khramchikhin, A. V. & Stadnichuk, M. D. (1996b). Russ. J. Gen. Chem. 66, 1158–1165.  Google Scholar
First citationPiterskaya, Yu. L., Khramchikhin, A. V., Stadnichuk, M. D., Bel'sky, V. K. & Stash, A. I. (1996a). Russ. J. Gen. Chem. 66, 1150–1957.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds