organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl­sulfinyl-5-iodo-2-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 3 June 2010; accepted 22 June 2010; online 26 June 2010)

In the title compound, C16H13IO2S, the phenyl ring is rotated out of the benzofuran plane, as indicated by the dihedral angle of 32.56 (6)°. The crystal structure is stabilized by an I⋯O halogen inter­action [3.200 (2) Å].

Related literature

For the crystal structures of similar 2-aryl-3-ethyl­sulfinyl-5-halo-1-benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o770.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o886.]). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796—4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13IO2S

  • Mr = 396.22

  • Orthorhombic, P b c a

  • a = 11.7297 (4) Å

  • b = 7.4560 (2) Å

  • c = 34.0313 (9) Å

  • V = 2976.26 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 296 K

  • 0.02 × 0.02 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.967

  • 14370 measured reflections

  • 3415 independent reflections

  • 3106 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.068

  • S = 1.15

  • 3415 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The compounds involving benzofuran skeleton show various pharmacological properties such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) activities.

These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-aryl-3-ethylsulfinyl-5-halo-1-benzofuran analogues (Choi et al., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.005 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the phenyl ring is 32.56 (6)°. The crystal packing (Fig. 2) is stabilized by I···O halogen–bonding interactions between the iodine and the oxygen of the SO unit [I···O2i = 3.200 (2) Å; C4–I···O2i = 176.44 (8)°] (Politzer et al., 2007).

Related literature top

For the crystal structures of similar 2-aryl-3-ethylsulfinyl-5-halo-1-benzofuran derivatives, see: Choi et al. (2010a,b). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 3-ethylsulfanyl-5-iodo-2-phenyl-1-benzofuran (380 mg, 1.0 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colourless solid [yield 79%, m.p. 419-420 K; Rf = 0.5 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 0.97 Å for methylene and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. I···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y, - z + 1 .]
3-Ethylsulfinyl-5-iodo-2-phenyl-1-benzofuran top
Crystal data top
C16H13IO2SF(000) = 1552
Mr = 396.22Dx = 1.769 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8139 reflections
a = 11.7297 (4) Åθ = 2.4–27.5°
b = 7.4560 (2) ŵ = 2.29 mm1
c = 34.0313 (9) ÅT = 296 K
V = 2976.26 (15) Å3Block, colourless
Z = 80.02 × 0.02 × 0.02 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3415 independent reflections
Radiation source: rotating anode3106 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.1°
ϕ and ω scansh = 159
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 89
Tmin = 0.954, Tmax = 0.967l = 4344
14370 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.068H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.026P)2 + 3.2745P]
where P = (Fo2 + 2Fc2)/3
3415 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
C16H13IO2SV = 2976.26 (15) Å3
Mr = 396.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.7297 (4) ŵ = 2.29 mm1
b = 7.4560 (2) ÅT = 296 K
c = 34.0313 (9) Å0.02 × 0.02 × 0.02 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3415 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3106 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.967Rint = 0.027
14370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.15Δρmax = 0.55 e Å3
3415 reflectionsΔρmin = 0.97 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.337055 (15)0.11075 (3)0.528788 (5)0.03128 (7)
S0.56486 (5)0.15154 (8)0.360798 (17)0.02225 (13)
O10.23461 (14)0.2567 (2)0.35329 (5)0.0259 (4)
O20.58668 (16)0.0183 (3)0.38324 (6)0.0318 (4)
C10.4196 (2)0.2055 (3)0.36723 (7)0.0217 (5)
C20.3566 (2)0.1963 (3)0.40373 (7)0.0212 (5)
C30.3845 (2)0.1631 (3)0.44285 (7)0.0239 (5)
H30.45940.14200.45060.029*
C40.2959 (2)0.1628 (4)0.46975 (7)0.0261 (5)
C50.1832 (2)0.1945 (4)0.45888 (8)0.0296 (6)
H50.12630.19370.47790.036*
C60.1550 (2)0.2274 (4)0.41965 (8)0.0288 (6)
H60.08020.24830.41180.035*
C70.2435 (2)0.2273 (3)0.39332 (7)0.0244 (5)
C80.34345 (19)0.2429 (3)0.33829 (7)0.0219 (5)
C90.3539 (2)0.2680 (3)0.29579 (7)0.0226 (5)
C100.2650 (2)0.2139 (3)0.27091 (8)0.0289 (5)
H100.19900.16390.28140.035*
C110.2760 (3)0.2353 (4)0.23078 (8)0.0353 (6)
H110.21710.19900.21430.042*
C120.3734 (3)0.3100 (4)0.21470 (8)0.0346 (6)
H120.38020.32260.18760.042*
C130.4609 (3)0.3660 (4)0.23919 (8)0.0320 (6)
H130.52610.41760.22860.038*
C140.4512 (2)0.3451 (3)0.27951 (7)0.0273 (5)
H140.51010.38290.29580.033*
C150.6250 (2)0.3317 (4)0.38974 (8)0.0314 (6)
H15A0.59000.33150.41560.038*
H15B0.70600.31060.39310.038*
C160.6077 (3)0.5131 (4)0.37097 (10)0.0434 (7)
H16A0.64740.51720.34630.065*
H16B0.63690.60470.38800.065*
H16C0.52780.53270.36660.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.03590 (12)0.03674 (12)0.02121 (10)0.00703 (7)0.00679 (6)0.00190 (7)
S0.0199 (3)0.0276 (3)0.0193 (3)0.0033 (2)0.0005 (2)0.0016 (2)
O10.0206 (8)0.0319 (9)0.0251 (8)0.0007 (7)0.0023 (7)0.0016 (7)
O20.0311 (10)0.0325 (10)0.0318 (10)0.0093 (8)0.0016 (8)0.0083 (8)
C10.0209 (11)0.0235 (12)0.0208 (11)0.0001 (9)0.0002 (9)0.0007 (9)
C20.0212 (11)0.0198 (12)0.0226 (11)0.0016 (9)0.0029 (9)0.0022 (9)
C30.0223 (12)0.0251 (12)0.0242 (12)0.0042 (10)0.0013 (9)0.0007 (10)
C40.0301 (13)0.0252 (12)0.0231 (12)0.0039 (10)0.0038 (10)0.0010 (10)
C50.0262 (13)0.0328 (15)0.0299 (13)0.0005 (11)0.0081 (10)0.0004 (11)
C60.0192 (12)0.0349 (14)0.0322 (14)0.0021 (10)0.0003 (10)0.0002 (11)
C70.0242 (11)0.0233 (12)0.0256 (12)0.0008 (10)0.0012 (10)0.0024 (10)
C80.0199 (11)0.0208 (11)0.0250 (12)0.0001 (9)0.0018 (9)0.0003 (9)
C90.0256 (12)0.0204 (12)0.0217 (12)0.0026 (9)0.0043 (9)0.0008 (9)
C100.0313 (14)0.0251 (13)0.0304 (13)0.0039 (11)0.0077 (11)0.0032 (10)
C110.0465 (17)0.0304 (14)0.0289 (13)0.0046 (12)0.0144 (12)0.0017 (11)
C120.0563 (18)0.0251 (13)0.0226 (12)0.0014 (13)0.0035 (12)0.0027 (10)
C130.0372 (15)0.0298 (14)0.0291 (13)0.0016 (11)0.0048 (11)0.0067 (11)
C140.0282 (13)0.0269 (13)0.0269 (13)0.0005 (10)0.0055 (10)0.0043 (10)
C150.0236 (12)0.0421 (16)0.0284 (13)0.0054 (12)0.0048 (10)0.0047 (12)
C160.0392 (16)0.0340 (16)0.057 (2)0.0074 (13)0.0056 (15)0.0078 (14)
Geometric parameters (Å, º) top
I—C42.102 (2)C8—C91.464 (3)
I—O2i3.200 (2)C9—C141.393 (4)
S—O21.500 (2)C9—C101.402 (3)
S—C11.764 (2)C10—C111.381 (4)
S—C151.809 (3)C10—H100.9300
O1—C81.379 (3)C11—C121.384 (4)
O1—C71.384 (3)C11—H110.9300
C1—C81.359 (3)C12—C131.386 (4)
C1—C21.447 (3)C12—H120.9300
C2—C71.392 (3)C13—C141.385 (4)
C2—C31.393 (3)C13—H130.9300
C3—C41.385 (3)C14—H140.9300
C3—H30.9300C15—C161.510 (4)
C4—C51.393 (4)C15—H15A0.9700
C5—C61.397 (4)C15—H15B0.9700
C5—H50.9300C16—H16A0.9600
C6—C71.372 (4)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C4—I—O2i176.44 (8)C14—C9—C8121.0 (2)
O2—S—C1107.1 (1)C10—C9—C8119.8 (2)
O2—S—C15106.4 (1)C11—C10—C9119.6 (3)
C1—S—C1598.0 (1)C11—C10—H10120.2
C8—O1—C7106.4 (2)C9—C10—H10120.2
C8—C1—C2107.2 (2)C10—C11—C12121.0 (3)
C8—C1—S126.3 (2)C10—C11—H11119.5
C2—C1—S126.1 (2)C12—C11—H11119.5
C7—C2—C3119.8 (2)C11—C12—C13119.6 (3)
C7—C2—C1105.1 (2)C11—C12—H12120.2
C3—C2—C1135.1 (2)C13—C12—H12120.2
C4—C3—C2117.1 (2)C14—C13—C12120.1 (3)
C4—C3—H3121.4C14—C13—H13120.0
C2—C3—H3121.4C12—C13—H13120.0
C3—C4—C5122.5 (2)C13—C14—C9120.5 (2)
C3—C4—I117.4 (2)C13—C14—H14119.8
C5—C4—I120.2 (2)C9—C14—H14119.8
C4—C5—C6120.6 (2)C16—C15—S112.5 (2)
C4—C5—H5119.7C16—C15—H15A109.1
C6—C5—H5119.7S—C15—H15A109.1
C7—C6—C5116.4 (2)C16—C15—H15B109.1
C7—C6—H6121.8S—C15—H15B109.1
C5—C6—H6121.8H15A—C15—H15B107.8
C6—C7—O1125.8 (2)C15—C16—H16A109.5
C6—C7—C2123.7 (2)C15—C16—H16B109.5
O1—C7—C2110.4 (2)H16A—C16—H16B109.5
C1—C8—O1110.8 (2)C15—C16—H16C109.5
C1—C8—C9133.4 (2)H16A—C16—H16C109.5
O1—C8—C9115.7 (2)H16B—C16—H16C109.5
C14—C9—C10119.2 (2)
O2—S—C1—C8128.5 (2)C1—C2—C7—O10.8 (3)
C15—S—C1—C8121.5 (2)C2—C1—C8—O10.7 (3)
O2—S—C1—C243.2 (2)S—C1—C8—O1172.33 (17)
C15—S—C1—C266.8 (2)C2—C1—C8—C9179.8 (3)
C8—C1—C2—C70.9 (3)S—C1—C8—C96.8 (4)
S—C1—C2—C7172.14 (19)C7—O1—C8—C10.2 (3)
C8—C1—C2—C3179.7 (3)C7—O1—C8—C9179.5 (2)
S—C1—C2—C36.7 (4)C1—C8—C9—C1433.4 (4)
C7—C2—C3—C40.0 (4)O1—C8—C9—C14147.5 (2)
C1—C2—C3—C4178.7 (3)C1—C8—C9—C10146.6 (3)
C2—C3—C4—C50.2 (4)O1—C8—C9—C1032.5 (3)
C2—C3—C4—I179.54 (19)C14—C9—C10—C111.0 (4)
C3—C4—C5—C60.4 (4)C8—C9—C10—C11179.0 (2)
I—C4—C5—C6179.4 (2)C9—C10—C11—C120.2 (4)
C4—C5—C6—C70.3 (4)C10—C11—C12—C130.7 (5)
C5—C6—C7—O1180.0 (2)C11—C12—C13—C140.8 (4)
C5—C6—C7—C20.1 (4)C12—C13—C14—C90.0 (4)
C8—O1—C7—C6179.5 (3)C10—C9—C14—C130.9 (4)
C8—O1—C7—C20.4 (3)C8—C9—C14—C13179.1 (2)
C3—C2—C7—C60.0 (4)O2—S—C15—C16179.1 (2)
C1—C2—C7—C6179.1 (2)C1—S—C15—C1668.5 (2)
C3—C2—C7—O1179.8 (2)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H13IO2S
Mr396.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.7297 (4), 7.4560 (2), 34.0313 (9)
V3)2976.26 (15)
Z8
Radiation typeMo Kα
µ (mm1)2.29
Crystal size (mm)0.02 × 0.02 × 0.02
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.954, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
14370, 3415, 3106
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.15
No. of reflections3415
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.97

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

Acknowledgements

This work was supported by a Dong-eui University Foundation Grant (2010).

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o770.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o886.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796—4805.  Web of Science CrossRef Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds