organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-5-Acetyl-6-hy­dr­oxy-3,6-di­methyl-4-phenyl-2H-4,5,6,7-tetra­hydro­indazol-1-ium chloride

aBaku State University, Z. Khalilov St. 23, Baku, AZ-1148, Azerbaijan, and bX-Ray Structural Centre, A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: Bahruz_81@mail.ru

(Received 10 June 2010; accepted 22 June 2010; online 26 June 2010)

The structure of the title compound, C17H21N2O2+·Cl, is of inter­est with respect to its biological activity. The title compound comprises an organic cation and a chloride anion in the asymmetric unit. The positive charge is localized in a pyrazole moiety forming a pyrazolium cation. The structure displays inter­molecular O—H⋯Cl and N—H⋯Cl hydrogen bonding.

Related literature

For general background, see: Raptis et al. (1993[Raptis, R. G., Staples, R. J., King, C. & Fackler, J. P. (1993). Acta Cryst. C49, 1716-1719.]); Rabe (1904[Rabe, P. (1904). Lieb. Ann. Bd. 332, 18-22.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21N2O2+·Cl

  • Mr = 320.81

  • Triclinic, [P \overline 1]

  • a = 6.9661 (3) Å

  • b = 8.3527 (4) Å

  • c = 15.6739 (7) Å

  • α = 88.145 (1)°

  • β = 87.385 (1)°

  • γ = 67.882 (1)°

  • V = 843.89 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.933, Tmax = 0.955

  • 9861 measured reflections

  • 4188 independent reflections

  • 3279 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.130

  • S = 1.00

  • 4188 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl 0.82 2.39 3.2110 (14) 176
N2—H2B⋯Cl 0.86 2.21 3.0620 (14) 171
N1—H1B⋯Cl 0.86 2.25 3.0280 (15) 150

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

(rac)-5-Acetyl-6-hydroxy-3,6-dimethyl-4-phenyl-2H-4,5,6,7- tetrahyroindazolium chloride (I) have good antibacterial and biological properties. We have synthesised the title compound, (I), and its structure is reported here (Fig. 1). The two [(C2(R),C4(R)] of three stereogenic centres of tetrahydroindazole moiety are of the same chirality. As the crystal crystallises in the centrosymmetric space group, the racemate (1:1) is present. The crystal structure involves O—H···Cl, and N—H···C intermolecular hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For general background [to what?], see: Raptis et al. (1993); Rabe (1904).

Experimental top

2,4-Diacetyl-5-hydroxy-5-methyl-3-phenylcyclohexanon (20 mmol)and hydrazine hydrate (20 mmol) were dissolved in 20 ml ethanol. The mixture was stirred at 340 K within 10 h. Through suspension in absolute toluene a flow of dry gaseous hydrogen chloride was used at 278-283 K. From a solution a white solid was obtained. A crude product was filtered and washed with ethanol. Then, the crude product was dissolved in ethanol (50 ml) and recrystallised to yield colourless block-shaped crystals of (I).

Refinement top

The hydrogen atoms of the OH and NH-groups of the molecule (I) were localized in a difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso (H) = 1.5Ueq(C) for CH3-group and Uiso(H) = 1.2Ueq(N) for amino groups]. The other hydrogen atoms were placed in calculated positions with and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)]. 24 reflections, with experimentally observed F2 deviating significantly from the theoretically calculated F2, were omitted from the refinement. Moreover, 76 reflections were not measured because the angle limits.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. A hydrogen-bonded (dashed lines) ribbon in the title compound. H atoms not involved in hydrogen bonding have been omitted for clarity.
rac-5-Acetyl-6-hydroxy-3,6-dimethyl-4-phenyl-2H-4,5,6,7- tetrahydroindazol-1-ium chloride top
Crystal data top
C17H21N2O2+·ClZ = 2
Mr = 320.81F(000) = 340
Triclinic, P1Dx = 1.263 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9661 (3) ÅCell parameters from 4494 reflections
b = 8.3527 (4) Åθ = 2.6–28.3°
c = 15.6739 (7) ŵ = 0.24 mm1
α = 88.145 (1)°T = 296 K
β = 87.385 (1)°Prism, colourless
γ = 67.882 (1)°0.30 × 0.30 × 0.20 mm
V = 843.89 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4188 independent reflections
Radiation source: fine-focus sealed tube3279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.933, Tmax = 0.955k = 1111
9861 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.130H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.1788P]
where P = (Fo2 + 2Fc2)/3
4188 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H21N2O2+·Clγ = 67.882 (1)°
Mr = 320.81V = 843.89 (7) Å3
Triclinic, P1Z = 2
a = 6.9661 (3) ÅMo Kα radiation
b = 8.3527 (4) ŵ = 0.24 mm1
c = 15.6739 (7) ÅT = 296 K
α = 88.145 (1)°0.30 × 0.30 × 0.20 mm
β = 87.385 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4188 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3279 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.955Rint = 0.015
9861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
4188 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.79637 (7)0.21601 (6)0.42366 (3)0.06850 (18)
O10.82690 (19)0.50419 (14)0.28900 (7)0.0544 (3)
H1A0.82560.42950.32400.082*
C20.6910 (2)0.84494 (17)0.21715 (8)0.0370 (3)
H2A0.66540.76340.18010.044*
C70.6848 (2)1.00157 (18)0.16319 (9)0.0403 (3)
C30.9075 (2)0.75279 (17)0.25585 (9)0.0407 (3)
H3A0.94150.84180.28350.049*
C1A0.5285 (2)0.89218 (18)0.28808 (9)0.0408 (3)
O21.2259 (2)0.71271 (18)0.18122 (10)0.0707 (4)
N20.2393 (2)0.9911 (2)0.36527 (10)0.0608 (4)
H2B0.11141.04410.38080.073*
C10.3197 (2)0.99656 (19)0.28640 (10)0.0469 (3)
C131.0750 (2)0.67523 (19)0.18596 (10)0.0475 (3)
C80.6566 (2)1.1566 (2)0.20107 (11)0.0484 (3)
H8A0.64421.16420.26030.058*
C5A0.5664 (3)0.8269 (2)0.37032 (9)0.0497 (4)
N10.3884 (3)0.8905 (2)0.41623 (9)0.0626 (4)
H1B0.37220.87030.46970.075*
C60.1911 (2)1.0995 (2)0.21689 (12)0.0557 (4)
H6A0.05081.15620.23810.084*
H6B0.19421.02470.17120.084*
H6C0.24451.18450.19620.084*
C40.9097 (3)0.6160 (2)0.32611 (9)0.0483 (3)
C120.7041 (3)0.9940 (3)0.07526 (11)0.0643 (5)
H12A0.72160.89160.04830.077*
C90.6467 (3)1.3007 (2)0.15225 (14)0.0623 (5)
H9A0.62541.40450.17870.075*
C141.0503 (3)0.5535 (2)0.12344 (12)0.0611 (4)
H14A1.16750.51740.08390.092*
H14B0.92590.61070.09280.092*
H14C1.04160.45430.15350.092*
C50.7689 (3)0.7091 (2)0.40209 (10)0.0577 (4)
H5A0.74870.62500.44190.069*
H5B0.83350.77460.43180.069*
C151.1284 (3)0.5161 (3)0.35650 (13)0.0697 (5)
H15A1.12450.43360.39990.104*
H15B1.18240.59520.37950.104*
H15C1.21600.45680.30920.104*
C110.6976 (4)1.1385 (3)0.02648 (13)0.0857 (7)
H11A0.71351.13130.03270.103*
C100.6680 (3)1.2903 (3)0.06526 (15)0.0771 (6)
H10A0.66241.38670.03250.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0681 (3)0.0699 (3)0.0529 (2)0.0135 (2)0.0232 (2)0.0174 (2)
O10.0784 (8)0.0446 (6)0.0443 (6)0.0286 (6)0.0005 (5)0.0089 (4)
C20.0406 (7)0.0392 (6)0.0305 (6)0.0150 (5)0.0049 (5)0.0008 (5)
C70.0331 (6)0.0466 (7)0.0376 (6)0.0120 (5)0.0024 (5)0.0094 (5)
C30.0458 (7)0.0372 (6)0.0379 (6)0.0148 (6)0.0001 (5)0.0027 (5)
C1A0.0477 (7)0.0400 (7)0.0371 (6)0.0202 (6)0.0090 (5)0.0008 (5)
O20.0494 (7)0.0660 (8)0.0957 (10)0.0224 (6)0.0128 (6)0.0015 (7)
N20.0598 (8)0.0617 (8)0.0610 (8)0.0257 (7)0.0290 (7)0.0075 (7)
C10.0488 (8)0.0423 (7)0.0520 (8)0.0216 (6)0.0165 (6)0.0059 (6)
C130.0442 (7)0.0380 (7)0.0539 (8)0.0096 (6)0.0047 (6)0.0090 (6)
C80.0455 (8)0.0493 (8)0.0530 (8)0.0212 (6)0.0043 (6)0.0093 (6)
C5A0.0667 (10)0.0497 (8)0.0354 (7)0.0265 (7)0.0129 (6)0.0014 (6)
N10.0789 (10)0.0658 (9)0.0437 (7)0.0307 (8)0.0246 (7)0.0027 (6)
C60.0420 (8)0.0487 (8)0.0718 (11)0.0128 (7)0.0071 (7)0.0005 (7)
C40.0620 (9)0.0437 (7)0.0372 (7)0.0179 (7)0.0044 (6)0.0075 (6)
C120.0766 (12)0.0636 (10)0.0398 (8)0.0138 (9)0.0079 (8)0.0095 (7)
C90.0492 (9)0.0508 (9)0.0895 (13)0.0225 (7)0.0095 (8)0.0199 (9)
C140.0675 (11)0.0518 (9)0.0554 (9)0.0145 (8)0.0176 (8)0.0058 (7)
C50.0796 (11)0.0598 (10)0.0326 (7)0.0256 (9)0.0001 (7)0.0065 (6)
C150.0735 (12)0.0644 (11)0.0615 (11)0.0147 (9)0.0182 (9)0.0181 (9)
C110.0979 (16)0.0927 (16)0.0494 (10)0.0205 (13)0.0106 (10)0.0316 (11)
C100.0620 (11)0.0730 (13)0.0880 (14)0.0198 (10)0.0012 (10)0.0454 (12)
Geometric parameters (Å, º) top
O1—C41.419 (2)C5A—C51.481 (3)
O1—H1A0.8200N1—H1B0.8600
C2—C1A1.5001 (18)C6—H6A0.9600
C2—C71.5224 (18)C6—H6B0.9600
C2—C31.5535 (19)C6—H6C0.9600
C2—H2A0.9800C4—C151.526 (2)
C7—C121.380 (2)C4—C51.537 (2)
C7—C81.384 (2)C12—C111.395 (3)
C3—C131.530 (2)C12—H12A0.9300
C3—C41.5573 (19)C9—C101.367 (3)
C3—H3A0.9800C9—H9A0.9300
C1A—C5A1.380 (2)C14—H14A0.9600
C1A—C11.387 (2)C14—H14B0.9600
O2—C131.203 (2)C14—H14C0.9600
N2—C11.3404 (19)C5—H5A0.9700
N2—N11.341 (2)C5—H5B0.9700
N2—H2B0.8600C15—H15A0.9600
C1—C61.476 (2)C15—H15B0.9600
C13—C141.495 (2)C15—H15C0.9600
C8—C91.386 (2)C11—C101.364 (4)
C8—H8A0.9300C11—H11A0.9300
C5A—N11.336 (2)C10—H10A0.9300
C4—O1—H1A109.5C1—C6—H6C109.5
C1A—C2—C7112.15 (11)H6A—C6—H6C109.5
C1A—C2—C3109.00 (11)H6B—C6—H6C109.5
C7—C2—C3110.88 (11)O1—C4—C15111.19 (14)
C1A—C2—H2A108.2O1—C4—C5109.66 (14)
C7—C2—H2A108.2C15—C4—C5109.42 (14)
C3—C2—H2A108.2O1—C4—C3106.27 (11)
C12—C7—C8118.09 (14)C15—C4—C3111.47 (14)
C12—C7—C2121.10 (14)C5—C4—C3108.75 (12)
C8—C7—C2120.80 (12)C7—C12—C11120.6 (2)
C13—C3—C2111.19 (11)C7—C12—H12A119.7
C13—C3—C4111.65 (11)C11—C12—H12A119.7
C2—C3—C4112.95 (12)C10—C9—C8119.94 (19)
C13—C3—H3A106.9C10—C9—H9A120.0
C2—C3—H3A106.9C8—C9—H9A120.0
C4—C3—H3A106.9C13—C14—H14A109.5
C5A—C1A—C1106.91 (13)C13—C14—H14B109.5
C5A—C1A—C2123.23 (14)H14A—C14—H14B109.5
C1—C1A—C2129.81 (13)C13—C14—H14C109.5
C1—N2—N1109.73 (14)H14A—C14—H14C109.5
C1—N2—H2B125.1H14B—C14—H14C109.5
N1—N2—H2B125.1C5A—C5—C4109.23 (12)
N2—C1—C1A106.79 (14)C5A—C5—H5A109.8
N2—C1—C6121.61 (14)C4—C5—H5A109.8
C1A—C1—C6131.60 (13)C5A—C5—H5B109.8
O2—C13—C14120.14 (15)C4—C5—H5B109.8
O2—C13—C3120.00 (15)H5A—C5—H5B108.3
C14—C13—C3119.86 (14)C4—C15—H15A109.5
C7—C8—C9121.12 (16)C4—C15—H15B109.5
C7—C8—H8A119.4H15A—C15—H15B109.5
C9—C8—H8A119.4C4—C15—H15C109.5
N1—C5A—C1A107.79 (15)H15A—C15—H15C109.5
N1—C5A—C5126.19 (14)H15B—C15—H15C109.5
C1A—C5A—C5126.01 (14)C10—C11—C12120.22 (19)
C5A—N1—N2108.77 (13)C10—C11—H11A119.9
C5A—N1—H1B125.6C12—C11—H11A119.9
N2—N1—H1B125.6C11—C10—C9120.03 (17)
C1—C6—H6A109.5C11—C10—H10A120.0
C1—C6—H6B109.5C9—C10—H10A120.0
H6A—C6—H6B109.5
C1A—C2—C7—C12137.04 (15)C1—C1A—C5A—N10.54 (17)
C3—C2—C7—C12100.85 (16)C2—C1A—C5A—N1178.05 (13)
C1A—C2—C7—C842.07 (18)C1—C1A—C5A—C5179.78 (15)
C3—C2—C7—C880.04 (15)C2—C1A—C5A—C52.7 (2)
C1A—C2—C3—C13170.59 (11)C1A—C5A—N1—N21.10 (19)
C7—C2—C3—C1365.48 (14)C5—C5A—N1—N2179.66 (16)
C1A—C2—C3—C444.16 (15)C1—N2—N1—C5A1.26 (19)
C7—C2—C3—C4168.09 (11)C13—C3—C4—O172.98 (16)
C7—C2—C1A—C5A136.73 (14)C2—C3—C4—O153.21 (15)
C3—C2—C1A—C5A13.55 (19)C13—C3—C4—C1548.32 (18)
C7—C2—C1A—C146.4 (2)C2—C3—C4—C15174.51 (13)
C3—C2—C1A—C1169.55 (14)C13—C3—C4—C5169.05 (13)
N1—N2—C1—C1A0.90 (18)C2—C3—C4—C564.77 (16)
N1—N2—C1—C6179.36 (15)C8—C7—C12—C110.7 (3)
C5A—C1A—C1—N20.21 (17)C2—C7—C12—C11179.84 (18)
C2—C1A—C1—N2177.07 (14)C7—C8—C9—C101.0 (2)
C5A—C1A—C1—C6179.92 (16)N1—C5A—C5—C4159.56 (16)
C2—C1A—C1—C62.6 (3)C1A—C5A—C5—C421.3 (2)
C2—C3—C13—O2125.03 (16)O1—C4—C5—C5A66.44 (16)
C4—C3—C13—O2107.83 (16)C15—C4—C5—C5A171.35 (15)
C2—C3—C13—C1454.72 (17)C3—C4—C5—C5A49.37 (18)
C4—C3—C13—C1472.43 (18)C7—C12—C11—C101.3 (3)
C12—C7—C8—C90.4 (2)C12—C11—C10—C90.7 (4)
C2—C7—C8—C9178.70 (14)C8—C9—C10—C110.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl0.822.393.2110 (14)176
N2—H2B···Cl0.862.213.0620 (14)171
N1—H1B···Cl0.862.253.0280 (15)150

Experimental details

Crystal data
Chemical formulaC17H21N2O2+·Cl
Mr320.81
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.9661 (3), 8.3527 (4), 15.6739 (7)
α, β, γ (°)88.145 (1), 87.385 (1), 67.882 (1)
V3)843.89 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.933, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
9861, 4188, 3279
Rint0.015
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.130, 1.00
No. of reflections4188
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl0.822.393.2110 (14)176
N2—H2B···Cl0.862.213.0620 (14)171
N1—H1B···Cl0.862.253.0280 (15)150
 

Acknowledgements

We thank Professor Abel M. Maharramov for fruitful discussions and help with this work.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRabe, P. (1904). Lieb. Ann. Bd. 332, 18–22.  Google Scholar
First citationRaptis, R. G., Staples, R. J., King, C. & Fackler, J. P. (1993). Acta Cryst. C49, 1716–1719.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds