organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl­quinoxaline-2-carb­­oxy­lic acid 4-oxide monohydrate

aDepartment of Applied Chemistry, China Agricultural University, Yuanmingyuan, West Road 2#, Haidian District, Beijing 100194, People's Republic of China
*Correspondence e-mail: hxgao@cau.edu.cn, zqzhou@cau.edu.cn

(Received 26 May 2010; accepted 13 June 2010; online 26 June 2010)

In the crystal structure of the title compound, C10H8N2O3·H2O, mol­ecules are linked via inter­molecular O—H⋯O and O—H⋯N hydrogen bonds into a two-dimensional network.

Related literature

For the synthesis of the starting material, see: Robertson & Kasublck (1973[Robertson, R. L. & Kasublck, A. V. (1973). US Patent No. 3 767 657.]). For the synthesis of the title compound, see: Dirlam & McFarland (1977[Dirlam, J. P. & McFarland, J. W. (1977). J. Org. Chem. 42, 1360-1364.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2O3·H2O

  • Mr = 222.20

  • Monoclinic, P 21 /c

  • a = 6.0526 (13) Å

  • b = 18.068 (4) Å

  • c = 8.9195 (19) Å

  • β = 98.520 (15)°

  • V = 964.7 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.02 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.04 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.822, Tmax = 0.960

  • 6140 measured reflections

  • 1568 independent reflections

  • 900 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.098

  • wR(F2) = 0.256

  • S = 1.10

  • 1568 reflections

  • 154 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O1i 0.85 (4) 1.97 (2) 2.794 (5) 164 (5)
O1W—H1WA⋯N2ii 0.86 (4) 2.14 (2) 2.968 (5) 163 (5)
O3—H3⋯O1W 0.84 1.76 2.574 (5) 162
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, molecules are linked via intermolecular O-H···O hydrogen bonds into a two-dimensional network.

Related literature top

For the synthesis of the starting material, see: Robertson & Kasublck (1973). For the synthesis of the title compound, see: Dirlam & McFarland (1977).

Experimental top

Following the procedure of Dirlam & McFarland (1977) ethyl-3-methyl-2-quinoxalinecarboxylate-1,4-dioxide (2.0 g, 8 mmol) (Robertson & Kasublck, 1973) was dissolved in 1-propanol (20 ml), trimethyl phosphate (2.0 g, 16 mmol) was added dropwise to the solution. The reaction mixture was heated under reflux for 2.5 h, and evaporated to dryness. The residue was recrystallized from ether-hexane (1:1) to yeild 1.6 g (80%) ethyl 2-methyl-3-quinoxalinecarboxylate-1-oxide. Ethyl 2-methyl-3-quinoxalinecarboxylate-1-oxide (5 g, 22 mmol) was suspended in aqueous 0.5M sodium hydroxide solution (50 mL), and stirred for 2 h. Then used concentrated hydrochloric acid to adjust the PH=2. The white solid was collected and recrystallized from water to give 4.0 g (80%) of the the title compound.

Refinement top

All H atoms (except for those bonded to the solvent water) were placed in calculated positions C-H = 0.95-0.98Å; O-H = 0.86Å and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl,O). The H atoms of the solvent water molecule were located in a difference Fourier and there positions were refined with restraints and with Uiso(H) = 1.5Ueq(O).

The crystals of the title compound were of low quality and the data used has resulted in a crystal structure which has lower than normal precision. The precision of the data however is adequate to describe the nature of the hydrogen bonding.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the labelling scheme. Displacement ellipsoids are drawn at the 30% probability level for all non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
3-Methylquinoxaline-2-carboxylic acid 4-oxide monohydrate top
Crystal data top
C10H8N2O3·H2OF(000) = 464
Mr = 222.20Dx = 1.530 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54186 Å
Hall symbol: -P 2ybcCell parameters from 426 reflections
a = 6.0526 (13) Åθ = 3.1–68.1°
b = 18.068 (4) ŵ = 1.02 mm1
c = 8.9195 (19) ÅT = 173 K
β = 98.520 (15)°Plate, yellow
V = 964.7 (4) Å30.20 × 0.20 × 0.04 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1568 independent reflections
Radiation source: fine-focus sealed tube900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ω scans at fixed χ = 45°θmax = 63.7°, θmin = 4.9°
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
h = 77
Tmin = 0.822, Tmax = 0.960k = 2020
6140 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.098H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.256 w = 1/[σ2(Fo2) + (0.1186P)2 + 0.0706P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1568 reflectionsΔρmax = 0.38 e Å3
154 parametersΔρmin = 0.31 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
C10H8N2O3·H2OV = 964.7 (4) Å3
Mr = 222.20Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.0526 (13) ŵ = 1.02 mm1
b = 18.068 (4) ÅT = 173 K
c = 8.9195 (19) Å0.20 × 0.20 × 0.04 mm
β = 98.520 (15)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1568 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
900 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.960Rint = 0.077
6140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0983 restraints
wR(F2) = 0.256H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.38 e Å3
1568 reflectionsΔρmin = 0.31 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.2035 (6)0.6094 (2)0.4980 (5)0.0458 (12)
O10.6172 (6)0.2378 (2)0.1107 (4)0.0546 (12)
O20.3088 (6)0.4949 (2)0.2089 (5)0.0614 (13)
O30.2260 (7)0.4704 (2)0.4389 (4)0.0532 (12)
H30.20180.51620.44010.080*
N10.4745 (7)0.2663 (3)0.1891 (5)0.0393 (12)
N20.1661 (7)0.3286 (2)0.3563 (5)0.0389 (12)
C10.1772 (8)0.2529 (3)0.3378 (6)0.0403 (14)
C20.0313 (9)0.2070 (3)0.4034 (6)0.0461 (15)
H20.07320.22800.46090.055*
C30.0398 (9)0.1315 (3)0.3845 (6)0.0474 (16)
H3A0.06040.10040.42770.057*
C40.1961 (9)0.1006 (3)0.3014 (6)0.0490 (16)
H40.20120.04830.29000.059*
C50.3405 (9)0.1436 (3)0.2369 (6)0.0451 (16)
H50.44570.12190.18100.054*
C60.3311 (8)0.2207 (3)0.2547 (6)0.0387 (14)
C70.4655 (9)0.3408 (3)0.2072 (6)0.0402 (15)
C80.3058 (9)0.3687 (3)0.2920 (6)0.0383 (14)
C90.6295 (9)0.3835 (3)0.1352 (6)0.0482 (16)
H9B0.77880.36250.16470.072*
H9C0.62870.43520.16840.072*
H9A0.58960.38120.02470.072*
C100.2818 (9)0.4516 (3)0.3070 (7)0.0434 (15)
H1WB0.261 (8)0.643 (2)0.450 (6)0.065*
H1WA0.080 (5)0.626 (3)0.522 (6)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.041 (2)0.044 (3)0.056 (3)0.003 (2)0.0210 (19)0.003 (2)
O10.049 (2)0.054 (3)0.065 (3)0.007 (2)0.021 (2)0.005 (2)
O20.081 (3)0.050 (3)0.059 (3)0.009 (2)0.030 (2)0.008 (2)
O30.065 (3)0.043 (3)0.056 (3)0.004 (2)0.021 (2)0.002 (2)
N10.032 (2)0.052 (3)0.037 (3)0.005 (2)0.016 (2)0.004 (2)
N20.034 (2)0.040 (3)0.045 (3)0.001 (2)0.013 (2)0.006 (2)
C10.031 (3)0.043 (4)0.048 (3)0.004 (3)0.010 (3)0.004 (3)
C20.044 (3)0.051 (4)0.045 (3)0.005 (3)0.010 (3)0.007 (3)
C30.045 (4)0.046 (4)0.056 (4)0.011 (3)0.021 (3)0.008 (3)
C40.050 (4)0.040 (4)0.060 (4)0.004 (3)0.018 (3)0.003 (3)
C50.037 (3)0.048 (4)0.053 (4)0.006 (3)0.018 (3)0.004 (3)
C60.037 (3)0.044 (4)0.036 (3)0.000 (3)0.012 (3)0.002 (3)
C70.033 (3)0.049 (4)0.040 (3)0.004 (3)0.008 (2)0.003 (3)
C80.034 (3)0.046 (4)0.036 (3)0.004 (3)0.008 (2)0.002 (3)
C90.045 (4)0.047 (4)0.056 (4)0.003 (3)0.016 (3)0.002 (3)
C100.038 (3)0.047 (4)0.048 (4)0.000 (3)0.015 (3)0.006 (3)
Geometric parameters (Å, º) top
O1W—H1WB0.85 (4)C2—H20.9500
O1W—H1WA0.86 (4)C3—C41.401 (7)
O1—N11.296 (5)C3—H3A0.9500
O2—C101.202 (6)C4—C51.359 (7)
O3—C101.316 (6)C4—H40.9500
O3—H30.8400C5—C61.404 (7)
N1—C71.357 (7)C5—H50.9500
N1—C61.388 (6)C7—C81.406 (7)
N2—C81.309 (6)C7—C91.477 (7)
N2—C11.380 (6)C8—C101.514 (8)
C1—C61.401 (6)C9—H9B0.9800
C1—C21.401 (7)C9—H9C0.9800
C2—C31.377 (6)C9—H9A0.9800
H1WB—O1W—H1WA108 (4)C6—C5—H5120.6
C10—O3—H3109.5N1—C6—C1118.8 (5)
O1—N1—C7120.0 (5)N1—C6—C5120.3 (5)
O1—N1—C6120.0 (5)C1—C6—C5120.9 (5)
C7—N1—C6120.1 (4)N1—C7—C8117.5 (5)
C8—N2—C1116.8 (4)N1—C7—C9115.2 (5)
N2—C1—C6121.6 (5)C8—C7—C9127.3 (5)
N2—C1—C2119.4 (5)N2—C8—C7125.2 (5)
C6—C1—C2119.0 (5)N2—C8—C10115.6 (5)
C3—C2—C1119.9 (5)C7—C8—C10119.0 (5)
C3—C2—H2120.1C7—C9—H9B109.5
C1—C2—H2120.1C7—C9—H9C109.5
C2—C3—C4120.0 (5)H9B—C9—H9C109.5
C2—C3—H3A120.0C7—C9—H9A109.5
C4—C3—H3A120.0H9B—C9—H9A109.5
C5—C4—C3121.5 (5)H9C—C9—H9A109.5
C5—C4—H4119.3O2—C10—O3124.3 (6)
C3—C4—H4119.3O2—C10—C8123.7 (5)
C4—C5—C6118.7 (5)O3—C10—C8112.0 (5)
C4—C5—H5120.6
C8—N2—C1—C60.2 (7)C4—C5—C6—C10.4 (8)
C8—N2—C1—C2179.8 (5)O1—N1—C7—C8179.4 (4)
N2—C1—C2—C3179.4 (4)C6—N1—C7—C80.7 (7)
C6—C1—C2—C30.6 (8)O1—N1—C7—C91.3 (7)
C1—C2—C3—C40.9 (8)C6—N1—C7—C9178.7 (4)
C2—C3—C4—C50.6 (8)C1—N2—C8—C70.4 (8)
C3—C4—C5—C60.0 (8)C1—N2—C8—C10176.9 (4)
O1—N1—C6—C1179.5 (4)N1—C7—C8—N20.6 (8)
C7—N1—C6—C10.6 (7)C9—C7—C8—N2178.7 (5)
O1—N1—C6—C50.2 (7)N1—C7—C8—C10176.5 (4)
C7—N1—C6—C5179.7 (4)C9—C7—C8—C104.2 (8)
N2—C1—C6—N10.3 (7)N2—C8—C10—O2143.8 (5)
C2—C1—C6—N1179.6 (5)C7—C8—C10—O233.6 (8)
N2—C1—C6—C5180.0 (5)N2—C8—C10—O335.6 (6)
C2—C1—C6—C50.1 (8)C7—C8—C10—O3147.0 (5)
C4—C5—C6—N1179.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1i0.85 (4)1.97 (2)2.794 (5)164 (5)
O1W—H1WA···N2ii0.86 (4)2.14 (2)2.968 (5)163 (5)
O3—H3···O1W0.841.762.574 (5)162
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H8N2O3·H2O
Mr222.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.0526 (13), 18.068 (4), 8.9195 (19)
β (°) 98.520 (15)
V3)964.7 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.02
Crystal size (mm)0.20 × 0.20 × 0.04
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.822, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
6140, 1568, 900
Rint0.077
(sin θ/λ)max1)0.581
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.098, 0.256, 1.10
No. of reflections1568
No. of parameters154
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.31

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1i0.85 (4)1.97 (2)2.794 (5)164 (5)
O1W—H1WA···N2ii0.86 (4)2.14 (2)2.968 (5)163 (5)
O3—H3···O1W0.841.762.574 (5)162.0
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the 973 Fund and the Ministry of Science and Technology, China (grant No. 2009CB118801). We acknowledge Dr Liang Tongling for collecting the data at the Analysis and Testing Center, Institute of Chemistry, Academy of Science, Beijing.

References

First citationDirlam, J. P. & McFarland, J. W. (1977). J. Org. Chem. 42, 1360–1364.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRobertson, R. L. & Kasublck, A. V. (1973). US Patent No. 3 767 657.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds