organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1-Adamant­yl)di­phenyl­methano­l

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín 762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno-Bohunice 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 28 May 2010; accepted 7 June 2010; online 16 June 2010)

In the title compound, C23H26O, the adamantane cage consists of three fused cyclo­hexane rings in classical chair conformations with absolute values of the C—C—C angles in the range 106.57 (11)–111.56 (12)°. The dihedral angle between the two phenyl rings is 81.38 (4)°. Although a hy­droxy group is present as a conceivable donor, no hydrogen bonds are observed in the crystal structure.

Related literature

For the preparation and spectroscopic properties of the title compound, see: Vícha et al. (2006[Vícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709-722.]); Stetter & Rauscher (1960[Stetter, H. & Rauscher, E. (1960). Chem. Ber. 93, 1161-1166.]); Molle et al. (1984[Molle, G., Briand, S., Bauer, P. & Dubois, J. E. (1984). Tetrahedron, 40, 5113-5119.]). For related structures, see: Vaissermann & Lomas (1997[Vaissermann, J. & Lomas, J. S. (1997). Acta Cryst. C53, 1341-1343.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26O

  • Mr = 318.44

  • Monoclinic, P 21 /n

  • a = 6.5370 (12) Å

  • b = 17.037 (3) Å

  • c = 15.322 (2) Å

  • β = 91.993 (14)°

  • V = 1705.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.971, Tmax = 0.978

  • 10354 measured reflections

  • 2996 independent reflections

  • 2133 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 0.93

  • 2996 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Adamantane derivatives are well known primarily for their unusual virustatic effect. Nevertheless, the scope of the biological activity of adamantane derivatives is much wider and novel compounds are prepared and tested steadily. The title tertiary alcohol was isolated as unwanted by-product accompanying 1-adamantyl phenyl ketone when no catalyst was employed. The molecule of title compound (Fig. 1) consists of two phenyl rings and an adamantane cage bound to a carbon atom to form a strained tertiary alcohol. Both phenyl rings (C12–C17 and C18–C23) are essentially planar with the maximum deviation from the best planes being 0.0110 (14) Å for C17 and 0.0027 (14) Å for C19. The angle between best planes of these rings is 81.38 (4)°. Both rings are slightly deformed in the plane owing to steric hindrance of the bulky adamantane moiety. The torsion angles describing arrangement of two phenyl rings and the adamantane cage C2—C1—C11—C12 and C1—C11—C12—C13 are -59.06 (14)° and -93.57 (15)°, respectively. Although a hydroxy group is present as a conceivable H-donor, no H-bonds were observed in crystal packing (see Fig. 2). The distance between the closest adjacent O-atoms is 5.2050 (17) Å.

Related literature top

For the preparation and spectroscopic properties of the title compound, see: Vícha et al. (2006); Stetter & Rauscher (1960); Molle et al. (1984). For related structures, see: Vaissermann & Lomas (1997).

Experimental top

Title compound was isolated from a complex mixture obtained by the reaction of adamantane-1-carbonyl chloride with phenylmagnesium bromide as it has been described previously (Vícha et al., 2006). The crystal used for data collection was grown by slow cooling of a saturated solution of title compound in n-hexane.

Refinement top

Carbon bound hydrogen atoms were positioned geometrically and refined as riding using standard SHELXTL (Sheldrick, 2008) constraints, with their Uiso values set to 1.2Ueq of their parent atoms. The oxygen bound hydrogen atom was located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: 'SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot (50% probability) of the asymmetric unit. Hydrogen atoms are represented as arbitrary spheres.
[Figure 2] Fig. 2. A crystal packing viewed along the a-axis. Hydrogen atoms are omitted for clarity.
(1-Adamantyl)diphenylmethanol top
Crystal data top
C23H26OF(000) = 688
Mr = 318.44Dx = 1.240 Mg m3
Monoclinic, P21/nMelting point: 400 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.5370 (12) ÅCell parameters from 10305 reflections
b = 17.037 (3) Åθ = 3.1–27.1°
c = 15.322 (2) ŵ = 0.07 mm1
β = 91.993 (14)°T = 120 K
V = 1705.4 (5) Å3Block, colourless
Z = 40.40 × 0.40 × 0.30 mm
Data collection top
Kuma KM-4-CCD
diffractometer
2996 independent reflections
Radiation source: fine-focus sealed tube2133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 0.06 mm pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 2020
Tmin = 0.971, Tmax = 0.978l = 1518
10354 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
2996 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C23H26OV = 1705.4 (5) Å3
Mr = 318.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.5370 (12) ŵ = 0.07 mm1
b = 17.037 (3) ÅT = 120 K
c = 15.322 (2) Å0.40 × 0.40 × 0.30 mm
β = 91.993 (14)°
Data collection top
Kuma KM-4-CCD
diffractometer
2996 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2133 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.978Rint = 0.027
10354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.21 e Å3
2996 reflectionsΔρmin = 0.18 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20822 (14)0.62332 (7)0.54962 (6)0.0238 (3)
C10.0671 (2)0.63609 (8)0.65477 (9)0.0192 (3)
C20.2658 (2)0.67842 (8)0.68106 (9)0.0215 (3)
H2A0.24390.73590.68010.026*
H2B0.37790.66570.63830.026*
C30.3275 (2)0.65309 (8)0.77314 (9)0.0249 (3)
H30.45700.68050.78810.030*
C40.1578 (2)0.67522 (9)0.84012 (10)0.0297 (4)
H4A0.19790.65970.89940.036*
H4B0.13570.73270.83960.036*
C50.0398 (2)0.63284 (9)0.81687 (9)0.0287 (4)
H50.15160.64740.86010.034*
C60.0060 (2)0.54372 (9)0.81919 (10)0.0326 (4)
H6A0.13420.51620.80530.039*
H6B0.03340.52750.87830.039*
C70.1637 (2)0.52169 (9)0.75231 (10)0.0275 (4)
H70.18660.46370.75370.033*
C80.0988 (2)0.54619 (8)0.66034 (9)0.0239 (3)
H8A0.20550.52990.61660.029*
H8B0.03010.51910.64650.029*
C90.3624 (2)0.56423 (9)0.77457 (10)0.0278 (4)
H9A0.47260.55000.73150.033*
H9B0.40540.54790.83320.033*
C100.1005 (2)0.65811 (9)0.72486 (9)0.0241 (3)
H10A0.23080.63230.71050.029*
H10B0.12280.71560.72410.029*
C110.0093 (2)0.66125 (8)0.56147 (9)0.0195 (3)
C120.0501 (2)0.75000 (8)0.55950 (8)0.0202 (3)
C130.2443 (2)0.78085 (8)0.57812 (9)0.0235 (3)
H130.35610.74630.58980.028*
C140.2764 (2)0.86159 (9)0.57982 (9)0.0270 (4)
H140.40970.88170.59250.032*
C150.1154 (2)0.91283 (9)0.56323 (9)0.0288 (4)
H150.13730.96790.56550.035*
C160.0776 (2)0.88315 (9)0.54334 (10)0.0292 (4)
H160.18850.91800.53150.035*
C170.1100 (2)0.80241 (8)0.54063 (9)0.0247 (3)
H170.24260.78270.52580.030*
C180.1246 (2)0.64101 (8)0.47894 (9)0.0211 (3)
C190.0360 (2)0.65919 (8)0.39898 (9)0.0245 (3)
H190.09920.67970.39930.029*
C200.1413 (2)0.64783 (8)0.31960 (9)0.0274 (4)
H200.07820.66100.26660.033*
C210.3378 (2)0.61734 (9)0.31742 (10)0.0292 (4)
H210.41010.60920.26330.035*
C220.4266 (2)0.59892 (9)0.39521 (10)0.0308 (4)
H220.56140.57800.39430.037*
C230.3220 (2)0.61044 (9)0.47534 (9)0.0263 (4)
H230.38650.59720.52800.032*
H1O0.191 (3)0.5765 (11)0.5483 (11)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0194 (5)0.0248 (7)0.0275 (6)0.0000 (4)0.0027 (4)0.0009 (5)
C10.0199 (7)0.0181 (8)0.0197 (8)0.0010 (6)0.0001 (6)0.0011 (6)
C20.0228 (8)0.0205 (8)0.0212 (8)0.0009 (6)0.0012 (6)0.0013 (6)
C30.0262 (8)0.0255 (8)0.0232 (8)0.0028 (6)0.0053 (6)0.0020 (6)
C40.0374 (9)0.0331 (9)0.0189 (8)0.0015 (7)0.0059 (7)0.0013 (7)
C50.0303 (9)0.0349 (9)0.0204 (8)0.0023 (7)0.0042 (7)0.0039 (7)
C60.0335 (9)0.0373 (10)0.0272 (9)0.0060 (7)0.0029 (7)0.0131 (7)
C70.0314 (9)0.0193 (8)0.0322 (9)0.0004 (6)0.0048 (7)0.0063 (6)
C80.0232 (8)0.0215 (8)0.0270 (8)0.0010 (6)0.0023 (6)0.0012 (6)
C90.0291 (9)0.0281 (9)0.0265 (9)0.0014 (6)0.0054 (7)0.0056 (7)
C100.0227 (8)0.0265 (9)0.0229 (8)0.0006 (6)0.0015 (6)0.0021 (6)
C110.0175 (7)0.0206 (8)0.0204 (8)0.0013 (6)0.0009 (6)0.0000 (6)
C120.0245 (8)0.0215 (8)0.0146 (7)0.0016 (6)0.0019 (6)0.0002 (6)
C130.0255 (8)0.0264 (9)0.0185 (8)0.0014 (6)0.0003 (6)0.0015 (6)
C140.0321 (9)0.0304 (9)0.0185 (8)0.0098 (7)0.0004 (6)0.0005 (6)
C150.0441 (10)0.0206 (8)0.0218 (8)0.0056 (7)0.0035 (7)0.0001 (6)
C160.0370 (9)0.0233 (9)0.0274 (9)0.0032 (7)0.0023 (7)0.0042 (6)
C170.0253 (8)0.0244 (9)0.0244 (8)0.0011 (6)0.0011 (6)0.0029 (6)
C180.0252 (8)0.0173 (8)0.0208 (8)0.0013 (6)0.0003 (6)0.0018 (6)
C190.0273 (8)0.0216 (8)0.0247 (8)0.0017 (6)0.0027 (6)0.0007 (6)
C200.0401 (9)0.0236 (8)0.0187 (8)0.0016 (7)0.0032 (7)0.0003 (6)
C210.0357 (9)0.0302 (9)0.0214 (8)0.0010 (7)0.0048 (7)0.0038 (7)
C220.0283 (9)0.0337 (9)0.0300 (9)0.0060 (7)0.0035 (7)0.0048 (7)
C230.0261 (8)0.0297 (9)0.0231 (8)0.0033 (7)0.0025 (6)0.0009 (6)
Geometric parameters (Å, º) top
O1—C111.4693 (16)C9—H9B0.9900
O1—H1O0.806 (18)C10—H10A0.9900
C1—C81.5482 (19)C10—H10B0.9900
C1—C21.5507 (18)C11—C121.5357 (19)
C1—C101.5535 (18)C11—C181.5513 (19)
C1—C111.5895 (18)C12—C131.3942 (18)
C2—C31.5425 (18)C12—C171.3986 (19)
C2—H2A0.9900C13—C141.3915 (19)
C2—H2B0.9900C13—H130.9500
C3—C91.531 (2)C14—C151.384 (2)
C3—C41.532 (2)C14—H140.9500
C3—H31.0000C15—C161.383 (2)
C4—C51.532 (2)C15—H150.9500
C4—H4A0.9900C16—C171.392 (2)
C4—H4B0.9900C16—H160.9500
C5—C61.535 (2)C17—H170.9500
C5—C101.5393 (19)C18—C231.3906 (19)
C5—H51.0000C18—C191.4079 (19)
C6—C71.530 (2)C19—C201.3901 (19)
C6—H6A0.9900C19—H190.9500
C6—H6B0.9900C20—C211.385 (2)
C7—C91.536 (2)C20—H200.9500
C7—C81.5434 (19)C21—C221.380 (2)
C7—H71.0000C21—H210.9500
C8—H8A0.9900C22—C231.399 (2)
C8—H8B0.9900C22—H220.9500
C9—H9A0.9900C23—H230.9500
C11—O1—H1O108.3 (13)C3—C9—H9B109.7
C8—C1—C2109.33 (11)C7—C9—H9B109.7
C8—C1—C10107.05 (11)H9A—C9—H9B108.2
C2—C1—C10106.57 (11)C5—C10—C1111.56 (12)
C8—C1—C11111.29 (10)C5—C10—H10A109.3
C2—C1—C11113.60 (11)C1—C10—H10A109.3
C10—C1—C11108.69 (11)C5—C10—H10B109.3
C3—C2—C1110.83 (11)C1—C10—H10B109.3
C3—C2—H2A109.5H10A—C10—H10B108.0
C1—C2—H2A109.5O1—C11—C12105.98 (11)
C3—C2—H2B109.5O1—C11—C18106.15 (10)
C1—C2—H2B109.5C12—C11—C18107.24 (10)
H2A—C2—H2B108.1O1—C11—C1107.44 (10)
C9—C3—C4109.77 (12)C12—C11—C1110.09 (10)
C9—C3—C2109.48 (11)C18—C11—C1119.16 (11)
C4—C3—C2109.72 (12)C13—C12—C17118.12 (13)
C9—C3—H3109.3C13—C12—C11121.66 (12)
C4—C3—H3109.3C17—C12—C11120.21 (12)
C2—C3—H3109.3C14—C13—C12120.80 (14)
C3—C4—C5108.96 (12)C14—C13—H13119.6
C3—C4—H4A109.9C12—C13—H13119.6
C5—C4—H4A109.9C15—C14—C13120.47 (14)
C3—C4—H4B109.9C15—C14—H14119.8
C5—C4—H4B109.9C13—C14—H14119.8
H4A—C4—H4B108.3C16—C15—C14119.45 (14)
C4—C5—C6109.72 (12)C16—C15—H15120.3
C4—C5—C10109.11 (12)C14—C15—H15120.3
C6—C5—C10109.86 (12)C15—C16—C17120.31 (14)
C4—C5—H5109.4C15—C16—H16119.8
C6—C5—H5109.4C17—C16—H16119.8
C10—C5—H5109.4C16—C17—C12120.82 (13)
C7—C6—C5109.20 (12)C16—C17—H17119.6
C7—C6—H6A109.8C12—C17—H17119.6
C5—C6—H6A109.8C23—C18—C19117.20 (13)
C7—C6—H6B109.8C23—C18—C11127.72 (13)
C5—C6—H6B109.8C19—C18—C11115.02 (12)
H6A—C6—H6B108.3C20—C19—C18121.63 (14)
C6—C7—C9109.53 (12)C20—C19—H19119.2
C6—C7—C8109.22 (12)C18—C19—H19119.2
C9—C7—C8109.67 (11)C21—C20—C19120.27 (14)
C6—C7—H7109.5C21—C20—H20119.9
C9—C7—H7109.5C19—C20—H20119.9
C8—C7—H7109.5C22—C21—C20118.85 (14)
C7—C8—C1111.07 (11)C22—C21—H21120.6
C7—C8—H8A109.4C20—C21—H21120.6
C1—C8—H8A109.4C21—C22—C23121.22 (14)
C7—C8—H8B109.4C21—C22—H22119.4
C1—C8—H8B109.4C23—C22—H22119.4
H8A—C8—H8B108.0C18—C23—C22120.82 (14)
C3—C9—C7109.63 (12)C18—C23—H23119.6
C3—C9—H9A109.7C22—C23—H23119.6
C7—C9—H9A109.7

Experimental details

Crystal data
Chemical formulaC23H26O
Mr318.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)6.5370 (12), 17.037 (3), 15.322 (2)
β (°) 91.993 (14)
V3)1705.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.971, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
10354, 2996, 2133
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 0.93
No. of reflections2996
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), 'SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

The financial support of this work by the Czech Ministry of Education, project No. MSM 7088352101, and by the Tomas Bata Foundation is gratefully acknowledged.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMolle, G., Briand, S., Bauer, P. & Dubois, J. E. (1984). Tetrahedron, 40, 5113–5119.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStetter, H. & Rauscher, E. (1960). Chem. Ber. 93, 1161–1166.  CrossRef CAS Web of Science Google Scholar
First citationVaissermann, J. & Lomas, J. S. (1997). Acta Cryst. C53, 1341–1343.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709–722.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds