organic compounds
Methyl 6-deoxy-6-iodo-α-D-galactoside
aCarbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand, bSchool of Chemical and Physical Sciences, Victoria University of Welllington, PO Box 600, Wellington, New Zealand, and cMalaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz
In the crystal of the title compound, C7H13IO5, the molecules are linked by O—H⋯O hydrogen bonds, which build linkages around one screw axis of the cell. These C(5) and C(6) packing motifs expand to R22(10) and C22(11) motifs and are similar to those found for closely related compounds. The galactoside ring has a 1C4 chair conformation.
Related literature
For the synthetic details, see Dangerfield et al. (2009); Stocker et al.(2010). For related structures, see Sikorski et al. (2009), Robertson & Sheldrick (1965). For ring conformations see: Cremer & Pople (1975) and for hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT and SADABS (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
10.1107/S1600536810022786/lh5062sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810022786/lh5062Isup2.hkl
Synthetic details are given in Dangerfield et al. (2009). The title compound was recrystallized from a solution of 10% methanol in ethyl acetate
One reflection (0,0,2) affected by the backstop and two clearly outlier reflections (ΔF2/σ(F2)>5) were removed from the refinment.
The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 1.00 (primary) or 0.99 (methylene) Å and O—H distances of 0.84 Å and with Uiso(H) = 1.5Ueq(C,O) (see Comment text).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT and SADABS (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C7H13IO5 | F(000) = 592 |
Mr = 304.08 | Dx = 1.994 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9870 reflections |
a = 5.7745 (2) Å | θ = 2.6–34.2° |
b = 7.9055 (3) Å | µ = 3.15 mm−1 |
c = 22.1835 (7) Å | T = 111 K |
V = 1012.68 (6) Å3 | Plate, colourless |
Z = 4 | 0.51 × 0.30 × 0.02 mm |
Bruker APEXII CCD diffractometer | 4062 independent reflections |
Radiation source: fine-focus sealed tube | 3930 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 8.333 pixels mm-1 | θmax = 35.0°, θmin = 2.7° |
ϕ and ω scans | h = −8→9 |
Absorption correction: multi-scan (Blessing, 1995) | k = −12→11 |
Tmin = 0.523, Tmax = 0.747 | l = −33→33 |
30359 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.050 | w = 1/[σ2(Fo2) + (0.0236P)2 + 0.4353P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
4062 reflections | Δρmax = 1.45 e Å−3 |
122 parameters | Δρmin = −0.78 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1653 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.002 (13) |
C7H13IO5 | V = 1012.68 (6) Å3 |
Mr = 304.08 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.7745 (2) Å | µ = 3.15 mm−1 |
b = 7.9055 (3) Å | T = 111 K |
c = 22.1835 (7) Å | 0.51 × 0.30 × 0.02 mm |
Bruker APEXII CCD diffractometer | 4062 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 3930 reflections with I > 2σ(I) |
Tmin = 0.523, Tmax = 0.747 | Rint = 0.033 |
30359 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.050 | Δρmax = 1.45 e Å−3 |
S = 1.06 | Δρmin = −0.78 e Å−3 |
4062 reflections | Absolute structure: Flack (1983), 1653 Friedel pairs |
122 parameters | Absolute structure parameter: 0.002 (13) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.40872 (2) | 0.478714 (16) | 0.504464 (5) | 0.02898 (4) | |
O1 | 0.5838 (2) | 0.12645 (13) | 0.34021 (5) | 0.01598 (19) | |
O2 | 0.67433 (18) | 0.21293 (14) | 0.22048 (5) | 0.01352 (19) | |
H2O | 0.7581 | 0.1333 | 0.2328 | 0.020* | |
O3 | 1.03501 (17) | 0.45621 (14) | 0.24533 (5) | 0.01504 (19) | |
H3O | 1.0745 | 0.3781 | 0.2218 | 0.023* | |
O4 | 0.77547 (18) | 0.67940 (13) | 0.31887 (6) | 0.01447 (19) | |
H4O | 0.6341 | 0.6700 | 0.3106 | 0.022* | |
O5 | 0.47929 (18) | 0.40652 (14) | 0.36225 (5) | 0.01431 (19) | |
C1 | 0.4969 (2) | 0.27912 (17) | 0.31726 (7) | 0.0122 (2) | |
H1 | 0.3391 | 0.2579 | 0.3003 | 0.018* | |
C2 | 0.6547 (2) | 0.33786 (17) | 0.26630 (7) | 0.0107 (2) | |
H2 | 0.5829 | 0.4406 | 0.2478 | 0.016* | |
C3 | 0.8900 (2) | 0.38930 (17) | 0.29162 (7) | 0.0118 (2) | |
H3 | 0.9664 | 0.2872 | 0.3093 | 0.018* | |
C4 | 0.8602 (2) | 0.52225 (19) | 0.34128 (6) | 0.0131 (2) | |
H4 | 1.0147 | 0.5426 | 0.3603 | 0.020* | |
C5 | 0.6977 (2) | 0.44721 (18) | 0.38928 (7) | 0.0145 (2) | |
H5 | 0.7687 | 0.3423 | 0.4064 | 0.022* | |
C6 | 0.6533 (3) | 0.5722 (2) | 0.43929 (8) | 0.0239 (3) | |
H6A | 0.5936 | 0.6788 | 0.4217 | 0.036* | |
H6B | 0.8013 | 0.5980 | 0.4599 | 0.036* | |
C7 | 0.4228 (3) | 0.0461 (2) | 0.38037 (8) | 0.0239 (3) | |
H7A | 0.4069 | 0.1141 | 0.4171 | 0.036* | |
H7B | 0.4798 | −0.0668 | 0.3909 | 0.036* | |
H7C | 0.2717 | 0.0362 | 0.3606 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.03654 (6) | 0.02910 (6) | 0.02130 (5) | 0.00409 (4) | 0.01094 (4) | 0.00063 (4) |
O1 | 0.0168 (4) | 0.0098 (4) | 0.0213 (5) | −0.0006 (4) | 0.0006 (4) | 0.0029 (3) |
O2 | 0.0113 (4) | 0.0111 (4) | 0.0182 (5) | 0.0009 (3) | −0.0005 (4) | −0.0027 (4) |
O3 | 0.0118 (4) | 0.0134 (4) | 0.0199 (5) | −0.0024 (3) | 0.0043 (3) | −0.0023 (4) |
O4 | 0.0124 (4) | 0.0092 (4) | 0.0218 (5) | −0.0001 (3) | −0.0002 (4) | 0.0013 (4) |
O5 | 0.0124 (4) | 0.0133 (5) | 0.0172 (5) | 0.0013 (3) | 0.0022 (4) | −0.0012 (4) |
C1 | 0.0096 (5) | 0.0103 (5) | 0.0168 (6) | 0.0000 (4) | 0.0004 (4) | 0.0003 (5) |
C2 | 0.0079 (4) | 0.0101 (5) | 0.0141 (6) | −0.0001 (4) | −0.0002 (4) | −0.0007 (4) |
C3 | 0.0081 (5) | 0.0109 (5) | 0.0163 (6) | −0.0009 (4) | 0.0005 (4) | −0.0001 (4) |
C4 | 0.0119 (5) | 0.0107 (5) | 0.0167 (6) | −0.0003 (4) | −0.0016 (4) | 0.0008 (5) |
C5 | 0.0165 (6) | 0.0123 (6) | 0.0149 (6) | −0.0004 (5) | −0.0009 (5) | 0.0002 (5) |
C6 | 0.0341 (8) | 0.0179 (7) | 0.0197 (8) | −0.0040 (6) | 0.0073 (6) | −0.0047 (6) |
C7 | 0.0311 (8) | 0.0190 (7) | 0.0218 (7) | −0.0062 (7) | 0.0037 (6) | 0.0055 (5) |
I1—C6 | 2.1521 (18) | C2—C3 | 1.5252 (18) |
O1—C1 | 1.4027 (17) | C2—H2 | 1.0000 |
O1—C7 | 1.436 (2) | C3—C4 | 1.532 (2) |
O2—C2 | 1.4219 (18) | C3—H3 | 1.0000 |
O2—H2O | 0.8400 | C4—C5 | 1.538 (2) |
O3—C3 | 1.4268 (17) | C4—H4 | 1.0000 |
O3—H3O | 0.8400 | C5—C6 | 1.508 (2) |
O4—C4 | 1.4248 (17) | C5—H5 | 1.0000 |
O4—H4O | 0.8400 | C6—H6A | 0.9900 |
O5—C1 | 1.4217 (18) | C6—H6B | 0.9900 |
O5—C5 | 1.4332 (18) | C7—H7A | 0.9800 |
C1—C2 | 1.524 (2) | C7—H7B | 0.9800 |
C1—H1 | 1.0000 | C7—H7C | 0.9800 |
C1—O1—C7 | 111.98 (12) | O4—C4—C5 | 111.62 (11) |
C2—O2—H2O | 109.5 | C3—C4—C5 | 107.55 (11) |
C3—O3—H3O | 109.5 | O4—C4—H4 | 108.3 |
C4—O4—H4O | 109.5 | C3—C4—H4 | 108.3 |
C1—O5—C5 | 112.93 (11) | C5—C4—H4 | 108.3 |
O1—C1—O5 | 112.36 (12) | O5—C5—C6 | 107.77 (12) |
O1—C1—C2 | 108.51 (11) | O5—C5—C4 | 109.50 (11) |
O5—C1—C2 | 110.34 (11) | C6—C5—C4 | 111.12 (12) |
O1—C1—H1 | 108.5 | O5—C5—H5 | 109.5 |
O5—C1—H1 | 108.5 | C6—C5—H5 | 109.5 |
C2—C1—H1 | 108.5 | C4—C5—H5 | 109.5 |
O2—C2—C1 | 111.48 (11) | C5—C6—I1 | 112.39 (11) |
O2—C2—C3 | 112.18 (11) | C5—C6—H6A | 109.1 |
C1—C2—C3 | 109.92 (11) | I1—C6—H6A | 109.1 |
O2—C2—H2 | 107.7 | C5—C6—H6B | 109.1 |
C1—C2—H2 | 107.7 | I1—C6—H6B | 109.1 |
C3—C2—H2 | 107.7 | H6A—C6—H6B | 107.9 |
O3—C3—C2 | 110.89 (12) | O1—C7—H7A | 109.5 |
O3—C3—C4 | 109.21 (11) | O1—C7—H7B | 109.5 |
C2—C3—C4 | 110.34 (10) | H7A—C7—H7B | 109.5 |
O3—C3—H3 | 108.8 | O1—C7—H7C | 109.5 |
C2—C3—H3 | 108.8 | H7A—C7—H7C | 109.5 |
C4—C3—H3 | 108.8 | H7B—C7—H7C | 109.5 |
O4—C4—C3 | 112.69 (11) | ||
C7—O1—C1—O5 | 68.74 (15) | O3—C3—C4—O4 | 54.99 (14) |
C7—O1—C1—C2 | −168.99 (12) | C2—C3—C4—O4 | −67.15 (14) |
C5—O5—C1—O1 | 60.32 (15) | O3—C3—C4—C5 | 178.43 (11) |
C5—O5—C1—C2 | −60.91 (15) | C2—C3—C4—C5 | 56.30 (14) |
O1—C1—C2—O2 | 56.83 (14) | C1—O5—C5—C6 | −175.45 (12) |
O5—C1—C2—O2 | −179.68 (11) | C1—O5—C5—C4 | 63.56 (15) |
O1—C1—C2—C3 | −68.21 (14) | O4—C4—C5—O5 | 64.63 (14) |
O5—C1—C2—C3 | 55.28 (14) | C3—C4—C5—O5 | −59.47 (14) |
O2—C2—C3—O3 | 59.55 (14) | O4—C4—C5—C6 | −54.31 (16) |
C1—C2—C3—O3 | −175.82 (11) | C3—C4—C5—C6 | −178.41 (13) |
O2—C2—C3—C4 | −179.31 (11) | O5—C5—C6—I1 | 56.19 (15) |
C1—C2—C3—C4 | −54.68 (14) | C4—C5—C6—I1 | 176.16 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···O3i | 0.84 | 1.90 | 2.7407 (15) | 175 |
O3—H3O···O4i | 0.84 | 2.01 | 2.8310 (16) | 166 |
O4—H4O···O2ii | 0.84 | 1.94 | 2.7529 (15) | 163 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H13IO5 |
Mr | 304.08 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 111 |
a, b, c (Å) | 5.7745 (2), 7.9055 (3), 22.1835 (7) |
V (Å3) | 1012.68 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.15 |
Crystal size (mm) | 0.51 × 0.30 × 0.02 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.523, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 30359, 4062, 3930 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.808 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.050, 1.06 |
No. of reflections | 4062 |
No. of parameters | 122 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.45, −0.78 |
Absolute structure | Flack (1983), 1653 Friedel pairs |
Absolute structure parameter | 0.002 (13) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT and SADABS (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···O3i | 0.84 | 1.90 | 2.7407 (15) | 175 |
O3—H3O···O4i | 0.84 | 2.01 | 2.8310 (16) | 166 |
O4—H4O···O2ii | 0.84 | 1.94 | 2.7529 (15) | 163 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by a New Zealand Foundation for Research Science and Technology contract [No. C08X0701] (SAG & GJG), the Health Research Council of New Zealand (MSMT) and the Cancer Society of New Zealand (MSMT & BLS). We thank Dr J. Waikara of the University of Canterbury, New Zealand, for her assistance.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dangerfield, E. M., Timmer, M. S. M. & Stocker, B. L. (2009). Org. Lett. 11, 535–538. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Robertson, J. H. & Sheldrick, B. (1965). Acta Cryst. 19, 820–826. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Tuwalska, D., Matjasik, B. & Liberek, B. (2009). Carbohydr. Res. 344, 830–833. Web of Science CSD CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stocker, B. L., Dangerfield, E. M., Win-Mason, A. L., Haslett, G. W. & Timmer, M. S. M. (2010). Eur. J. Org. Chem. 9, 1615–1637. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Alkyl iodoglycosides such as the title compound (I) are versatile synthetic intermediates for the introduction of a wide array of functional groups, e.g. amines, ethers and esters, onto a carbohydrate scaffold. In addition, the chemical transformation of iodoglycosides have led to the synthesis of a wide array of biologically important molecules (Stocker et al., 2010; Dangerfield et al., 2009).
The asymmetric unit of the title compound (I) contains one independent methyl 6-deoxy-6-iodo-α-D-galactoside molecule (Fig. 1). The galactoside ring (C1–C5,O5) has a 1C4 chair conformation with Q 0.5902 (14) Å, θ & ϕ 3.36 (15) & 279 (2)° respectively (Cremer & Pople, 1975) similar to that of the corresponding glucopyranoside 0.563 (5) Å, 4.8 (5)° & 310 (5)° (BOSLEB, Sikorski et al., 2009). The absolute configurations with C1(R), C2(R), C3(S), C4(R), C5(S) are consistent with that expected from the synthesis.
The reported data herein (see experimental) is for the default "conventional" model: isotropic hydrogen atoms riding on their parent atoms R[F2>2σ(F2)] (R1), 0.0214, with a total of 122 variables. For interest, a "fully refined" model was used with isotropic hydrogen atoms and anisotropic non-hydrogen atoms giving R1 0.0211, wR(F2) (wR2) 0.0482 for all 4062 data, using 170 variables. These coordinates are available from the designated author. The su values for the non-hydrogen atoms are similar for both models (0.0017–0.0023 Å), and no significant changes are found between the structural details of the two models. As an aside, we note the dominance of the iodine scattering seen in the refinement of a model with the iodine given anisotropic, and the non-hydrogen atoms isotropic, thermal parameters with the same restrained riding H atoms giving R1, wR2 of 0.0277, 0.0618 respectively for just 62 variables!
Lattice binding is provided by O—H···O hydrogen bonds (Table 1), which build linkages around the b screw axis of the cell (Figure 2). This binding is notably similar to that observed for the bromohydrin analogue (MGALBH, Robertson & Sheldrick, 1965), and the corresponding glucopyranoside (BOSLEB). The basic motif building blocks (Bernstein et al., 1995) are of C(6) & C(5) types, which combine to give 2R2(10) and 2C2(11) motifs. Minor packing differences are noted with the BOSLEB structure, which has similar cell dimensions, with two, rather than one C(6) motif, an additional C–H···O interaction and a different 2R2(10) motif.