organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-N-[Hy­dr­oxy(4-pyrid­yl)meth­yl]picolinamide: a hemiamidal

aInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: muhammad.altaf@unine.ch

(Received 3 June 2010; accepted 7 June 2010; online 16 June 2010)

The title compound, C12H11N3O2, a hemiamidal, was synthesized by solvent-free aldol condensation at room temperature by grinding picolinamide with isonicotinaldehyde in a 1:1 molar ratio. In the mol­ecule, the two pyridine rings are inclined to one another by 58.75 (6)°. They are linked, at positions 2 and 4, by the hemiamidal bridge (–CO—NH—CHOH–). The NH-group H atom forms an intra­molecular hydrogen bond with the N atom of the picolinamide pyridine ring. In the crystal, symmetry-related mol­ecules are linked via N—H⋯O hydrogen bonds, involving the NH group H atom of the hemiamidal bridge and the hy­droxy O atom, forming inversion-related dimers, with graph-set R22(8). Adjacent mol­ecules are also linked via O—H⋯N hydrogen bonds, involving the hy­droxy substituent and the 4-pyridine N atom. Together these inter­actions lead to the formation of double-stranded ribbon-like hydrogen-bonded polymers propagating in [010]. The latter are further connected via C—H⋯O hydrogen bonds involving the carbonyl O atom, so forming a two-dimensional network in (011).

Related literature

For background to green synthesis, see: Raston & Scott (2000[Raston, C. L. & Scott, J. L. (2000). Green Chem. 2, 49-52.]). For solid-state reactions and solvent-free syntheses, see: Kaupp (2003[Kaupp, G. (2003). CrystEngComm, 5, 117-133.], 2005[Kaupp, G. (2005). Topics in Current Chemistry, Vol. 254, Organic Solid State Reactions, pp. 95-183. Germany: Springer GmbH.]). For the structure of a similar non-cyclic hemiamidal, see: Kawahara et al. (1992[Kawahara, T., Suzuki, K., Iwasaki, Y., Shimoi, H., Akita, M., Moro-oka, Y. & Nishikawa, Y. (1992). Chem. Commun. pp. 625-626.]). For details of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen-bonding graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the illustration and analysis of hydrogen bonding, see: Macrae et al. (2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O2

  • Mr = 229.24

  • Monoclinic, P 21 /c

  • a = 12.1450 (13) Å

  • b = 5.6044 (4) Å

  • c = 16.3940 (19) Å

  • β = 111.354 (9)°

  • V = 1039.26 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.50 × 0.41 × 0.10 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • 14414 measured reflections

  • 2823 independent reflections

  • 2196 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.04

  • 2823 reflections

  • 163 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N1 0.875 (17) 2.468 (18) 2.7769 (16) 101.4 (13)
N2—H2N⋯O2i 0.875 (17) 2.091 (17) 2.9304 (15) 160.7 (16)
O2—H2O⋯N1ii 0.905 (19) 1.92 (2) 2.8056 (16) 167.6 (17)
C7—H7⋯O1iii 1.00 2.43 3.3694 (15) 157
C12—H12⋯O1iv 0.95 2.43 3.3517 (17) 163
Symmetry codes: (i) -x, -y+2, -z; (ii) x, y+1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2004[Stoe & Cie. (2004). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2004[Stoe & Cie. (2004). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Green chemistry is a well established field of research, enhanced by its numerous applications in high technology industries and because of the need for environmentally friendly syntheses. The perfect green reaction has been described as one which: proceeds at room temperature, requires no organic solvent, is highly selective and exhibits high atom efficiency, yet produces no waste products (Raston & Scott, 2000). In recent decades, numerous reactions using mechanical activation have been reported to give 100% yield (Kaupp, 2005). This procedure has a number of advantages, such as rapid and qualitatively solvent free synthesis and no necessary work up procedure (Kaupp, 2003). On the other hand, there are some disadvantages, such as the use of harmful sodium hydroxide, or other sodium salts, as intermediates in the reaction work up. The title compound was synthesized by grinding picolinamide with isonicotinaldehyde in a molar ratio of 1:1 giving a brown gelatinous material. On drying in air a brown microcrystalline powder was obtained, which proved to be the title compound. The compound is a result of the combination of green chemistry and mechanical activation.

The molecule structure of the title molecule is illustrated in Fig. 1. The bond distances are normal (Allen et al., 1987) and the bond angles in the hemiamidal bridge (–CO—NH-CHOH–) are similar to those observed in (1-hydroxybut-2-yl)ammonium N-benzoyl-α-hydroxyglycine (Kawahara et al., 1992). Interestingly, here the authors showed that Peptidylglycine-hydroxylating monooxygenase (PHM), converted N-benzoylglycine stereoselectively to S-N-benzoyl-hydroxyglycine. The latter is the only non-cyclic example of such a (–CO—NH-CHOH–) unit that was found during a search of the Cambridge Crystal Structure Database (CSD, V5.31, last update May 2010; Allen et al., 2002).

In the title molecule the two pyridine rings are inclined to one another by 58.75 (6) °, and the NH H-atom (H2N) forms an intramolecular hydrogen bond with the picolinamide N-atom (N1) (Fig. 1 and Table 1).

In the crystal molecules are linked via N—H···O and O—H···O hydrogen bonds (Table 1). The N—H···O hydrogen bonds, involving the hemiamidal NH group and the hydroxyl O-atom, lead to the formation of inversion dimers, graph-set R22(8) (Fig. 2) (Bernstein et al., 1995). Adjacent molecules are linked via O—H···N hydrogen bonds involving the hydroxyl H-atom (H2O) and the adjacent pyridine N-atom, N2 (Table 1). Together with molecules related by an inversion center these interactions lead to a graph-set of R44(14) (Fig. 3). Finally these hydrogen bonding interactions lead to the formation of double-stranded ribbon-like polymers propagating in [010]. They are further linked via C—H···O interactions, involving the CO O-atom, leading to the formation of two dimensional networks stacking along [100] (Fig. 4 and Table 1).

Related literature top

For background to green synthesis, see: Raston & Scott (2000). For solid-state reactions and solvent-free syntheses, see: Kaupp (2003, 2005). For the structure of a similar non-cyclic hemiamidal, see: Kawahara et al. (1992). For details of the Cambridge Structural Database, see: Allen (2002). For standard bond lengths, see: Allen et al. (1987). For details of hydrogen-bonding graph-set analysis, see: Bernstein et al. (1995). For the illustration and analysis of hydrogen bonding, see: Macrae et al. (2006).

Experimental top

The synthesis of the title compound was carried out by mixing by hand in a mortar a 1:1 molar ratio of picolinamide with isonicotinaldehyde. A viscous brown mixture was obtained which on drying in air gave a brown micro-crystalline powder (Yield 98.78%). Elemental analysis (%) for C12H11N3O2: C, 62.88; H, 4.80; N, 18.34. Found: C, 62.75; H, 4.91; N, 18.54. IR (cm-1): 3471.51, 3288.31, 3025.77, 1676.26, 1616.03, 1590.90, 1569.42, 1412.63, 1156.79, 922.55, 747.07, 581.52. Crystals suitable for X-ray analysis were obtained during a failed attempt of complex formation with MnCl2.6H2O in a methanol/water solution. The colourless reaction solution obtained was filtered and the filtrate left undisturbed at RT for slow evaporation. After five days colourless plate-like crystals, suitable for X-ray diffraction analysis, were obtained.

Refinement top

The NH and OH H-atoms were located in a difference electron-density map and were freely refined: O—H = 0.905 (19) Å, N—H = 0.875 (17) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å for H-aromatic, and 1.00 Å for H-methine, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2004); cell refinement: X-AREA (Stoe & Cie, 2004); data reduction: X-RED32 (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with dispacement ellipsoids drawn at the 50% probability level [The intramolecular N—H···N hydrogen bond is shown as a dashed line].
[Figure 2] Fig. 2. A view of the hydrogen bonded inversion dimers in the crystal of the title compound; graph-set R22(8)>b>b (Mercury: Macrae et al., 2006).
[Figure 3] Fig. 3. A view of the hydrogen bonded R44(14)a>b>a>b graph-set, involving adjacent molecules and those related by an inversion center, in the crystal structure of the title compound (Mercury: Macrae et al., 2006).
[Figure 4] Fig. 4. A view along the b-axis of the crystal packing of the title compound, with the N—H···O, O—H···N and C—H···O hydrogen bonds shown as dashed lines (see Table 1 for details).
rac-N-[Hydroxy(4-pyridyl)methyl]picolinamide top
Crystal data top
C12H11N3O2F(000) = 480
Mr = 229.24Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10944 reflections
a = 12.1450 (13) Åθ = 1.8–29.6°
b = 5.6044 (4) ŵ = 0.10 mm1
c = 16.3940 (19) ÅT = 173 K
β = 111.354 (9)°Plate, colourless
V = 1039.26 (18) Å30.50 × 0.41 × 0.10 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
2196 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 29.3°, θmin = 1.8°
phi + ω rotation scansh = 1616
14414 measured reflectionsk = 77
2823 independent reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0672P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2823 reflectionsΔρmax = 0.37 e Å3
163 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (4)
Crystal data top
C12H11N3O2V = 1039.26 (18) Å3
Mr = 229.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1450 (13) ŵ = 0.10 mm1
b = 5.6044 (4) ÅT = 173 K
c = 16.3940 (19) Å0.50 × 0.41 × 0.10 mm
β = 111.354 (9)°
Data collection top
Stoe IPDS-2
diffractometer
2196 reflections with I > 2σ(I)
14414 measured reflectionsRint = 0.079
2823 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
2823 reflectionsΔρmin = 0.22 e Å3
163 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08117 (8)1.01540 (16)0.21882 (6)0.0269 (3)
O20.03250 (8)1.27719 (16)0.06003 (6)0.0233 (2)
N10.15978 (9)0.51231 (18)0.08046 (7)0.0216 (3)
N20.01442 (9)0.91083 (19)0.11117 (7)0.0206 (3)
N30.42324 (10)0.8732 (2)0.16564 (8)0.0328 (3)
C10.24525 (11)0.3491 (2)0.05116 (9)0.0253 (3)
C20.35054 (11)0.3619 (3)0.06494 (9)0.0293 (4)
C30.36862 (11)0.5519 (3)0.11228 (10)0.0299 (4)
C40.28077 (11)0.7220 (2)0.14387 (9)0.0254 (3)
C50.17819 (10)0.6966 (2)0.12589 (8)0.0206 (3)
C60.08534 (10)0.8875 (2)0.15735 (8)0.0204 (3)
C70.06900 (10)1.1054 (2)0.12781 (8)0.0195 (3)
C80.19102 (10)1.0180 (2)0.13730 (7)0.0202 (3)
C90.26572 (11)1.1592 (2)0.11155 (9)0.0256 (3)
C100.37952 (12)1.0795 (3)0.12702 (10)0.0318 (4)
C110.34982 (12)0.7394 (2)0.19001 (9)0.0298 (4)
C120.23415 (11)0.8019 (2)0.17731 (9)0.0258 (3)
H10.232900.217200.019100.0300*
H20.409400.242500.042400.0350*
H2N0.0255 (14)0.824 (3)0.0645 (11)0.026 (4)*
H2O0.0220 (16)1.371 (3)0.0699 (12)0.038 (5)*
H30.440200.565500.123000.0360*
H40.290400.853600.177200.0310*
H70.074301.184700.183800.0230*
H90.239501.308400.083700.0310*
H100.429801.178700.108900.0380*
H110.378600.591400.217900.0360*
H120.185600.698800.195700.0310*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0345 (5)0.0250 (5)0.0274 (5)0.0026 (4)0.0186 (4)0.0048 (4)
O20.0272 (4)0.0201 (4)0.0265 (4)0.0048 (3)0.0145 (4)0.0036 (3)
N10.0231 (5)0.0199 (5)0.0238 (5)0.0013 (4)0.0108 (4)0.0005 (4)
N20.0236 (5)0.0197 (5)0.0209 (5)0.0023 (4)0.0110 (4)0.0025 (4)
N30.0246 (5)0.0305 (6)0.0421 (7)0.0003 (4)0.0107 (5)0.0041 (5)
C10.0276 (6)0.0210 (6)0.0275 (6)0.0008 (5)0.0104 (5)0.0002 (5)
C20.0250 (6)0.0279 (7)0.0342 (7)0.0042 (5)0.0100 (5)0.0012 (5)
C30.0235 (6)0.0322 (7)0.0377 (7)0.0003 (5)0.0156 (5)0.0025 (6)
C40.0255 (6)0.0253 (6)0.0290 (6)0.0022 (5)0.0141 (5)0.0002 (5)
C50.0236 (5)0.0197 (5)0.0205 (5)0.0026 (4)0.0104 (4)0.0036 (4)
C60.0231 (5)0.0187 (5)0.0213 (5)0.0028 (4)0.0103 (4)0.0019 (4)
C70.0236 (5)0.0167 (5)0.0208 (5)0.0007 (4)0.0111 (4)0.0009 (4)
C80.0220 (5)0.0203 (6)0.0191 (5)0.0025 (4)0.0086 (4)0.0029 (4)
C90.0270 (6)0.0222 (6)0.0293 (6)0.0034 (5)0.0124 (5)0.0002 (5)
C100.0257 (6)0.0312 (7)0.0418 (8)0.0051 (5)0.0162 (6)0.0008 (6)
C110.0270 (6)0.0249 (6)0.0339 (7)0.0029 (5)0.0069 (5)0.0007 (5)
C120.0264 (6)0.0231 (6)0.0279 (6)0.0005 (5)0.0099 (5)0.0017 (5)
Geometric parameters (Å, º) top
O1—C61.2226 (15)C7—C81.5141 (18)
O2—C71.4140 (15)C8—C91.3807 (18)
O2—H2O0.905 (19)C8—C121.3861 (16)
N1—C11.3348 (17)C9—C101.385 (2)
N1—C51.3389 (16)C11—C121.388 (2)
N2—C71.4452 (16)C1—H10.9500
N2—C61.3443 (17)C2—H20.9500
N3—C101.332 (2)C3—H30.9500
N3—C111.3328 (19)C4—H40.9500
N2—H2N0.875 (17)C7—H71.0000
C1—C21.379 (2)C9—H90.9500
C2—C31.382 (2)C10—H100.9500
C3—C41.383 (2)C11—H110.9500
C4—C51.3881 (19)C12—H120.9500
C5—C61.5029 (17)
C7—O2—H2O107.2 (11)N3—C10—C9124.42 (14)
C1—N1—C5117.60 (12)N3—C11—C12124.34 (11)
C6—N2—C7121.06 (10)C8—C12—C11118.62 (12)
C10—N3—C11115.87 (13)N1—C1—H1118.00
C7—N2—H2N117.3 (12)C2—C1—H1118.00
C6—N2—H2N120.8 (12)C1—C2—H2121.00
N1—C1—C2123.46 (12)C3—C2—H2121.00
C1—C2—C3118.60 (14)C2—C3—H3121.00
C2—C3—C4118.87 (13)C4—C3—H3121.00
C3—C4—C5118.65 (12)C3—C4—H4121.00
N1—C5—C4122.81 (11)C5—C4—H4121.00
C4—C5—C6118.26 (11)O2—C7—H7108.00
N1—C5—C6118.92 (11)N2—C7—H7108.00
N2—C6—C5115.50 (11)C8—C7—H7108.00
O1—C6—C5120.06 (12)C8—C9—H9121.00
O1—C6—N2124.37 (12)C10—C9—H9121.00
O2—C7—N2111.58 (10)N3—C10—H10118.00
O2—C7—C8108.43 (10)C9—C10—H10118.00
N2—C7—C8111.59 (10)N3—C11—H11118.00
C9—C8—C12117.93 (12)C12—C11—H11118.00
C7—C8—C9120.71 (10)C8—C12—H12121.00
C7—C8—C12121.23 (11)C11—C12—H12121.00
C8—C9—C10118.82 (12)
C5—N1—C1—C20.34 (19)N1—C5—C6—O1158.19 (12)
C1—N1—C5—C40.59 (18)N1—C5—C6—N224.74 (16)
C1—N1—C5—C6178.08 (11)C4—C5—C6—O123.08 (17)
C7—N2—C6—O14.40 (19)C4—C5—C6—N2153.99 (12)
C7—N2—C6—C5172.53 (10)O2—C7—C8—C925.04 (15)
C6—N2—C7—O2107.33 (13)O2—C7—C8—C12159.37 (11)
C6—N2—C7—C8131.21 (12)N2—C7—C8—C9148.32 (11)
C11—N3—C10—C90.1 (2)N2—C7—C8—C1236.09 (15)
C10—N3—C11—C120.2 (2)C7—C8—C9—C10175.51 (12)
N1—C1—C2—C30.7 (2)C12—C8—C9—C100.22 (19)
C1—C2—C3—C40.1 (2)C7—C8—C12—C11175.24 (11)
C2—C3—C4—C50.7 (2)C9—C8—C12—C110.47 (18)
C3—C4—C5—N11.1 (2)C8—C9—C10—N30.1 (2)
C3—C4—C5—C6177.56 (12)N3—C11—C12—C80.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N10.875 (17)2.468 (18)2.7769 (16)101.4 (13)
N2—H2N···O2i0.875 (17)2.091 (17)2.9304 (15)160.7 (16)
O2—H2O···N1ii0.905 (19)1.92 (2)2.8056 (16)167.6 (17)
C7—H7···O1iii1.002.433.3694 (15)157
C12—H12···O1iv0.952.433.3517 (17)163
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H11N3O2
Mr229.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.1450 (13), 5.6044 (4), 16.3940 (19)
β (°) 111.354 (9)
V3)1039.26 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.41 × 0.10
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14414, 2823, 2196
Rint0.079
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.04
No. of reflections2823
No. of parameters163
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.22

Computer programs: X-AREA (Stoe & Cie, 2004), X-RED32 (Stoe & Cie, 2004), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N10.875 (17)2.468 (18)2.7769 (16)101.4 (13)
N2—H2N···O2i0.875 (17)2.091 (17)2.9304 (15)160.7 (16)
O2—H2O···N1ii0.905 (19)1.92 (2)2.8056 (16)167.6 (17)
C7—H7···O1iii1.002.433.3694 (15)157
C12—H12···O1iv0.952.433.3517 (17)163
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2.
 

Acknowledgements

This work was partially financed by the Swiss National Science Foundation.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationKaupp, G. (2003). CrystEngComm, 5, 117–133.  Web of Science CrossRef CAS Google Scholar
First citationKaupp, G. (2005). Topics in Current Chemistry, Vol. 254, Organic Solid State Reactions, pp. 95–183. Germany: Springer GmbH.  Google Scholar
First citationKawahara, T., Suzuki, K., Iwasaki, Y., Shimoi, H., Akita, M., Moro-oka, Y. & Nishikawa, Y. (1992). Chem. Commun. pp. 625–626.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaston, C. L. & Scott, J. L. (2000). Green Chem. 2, 49–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2004). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds