organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1762-o1763

Ethyl 1,6-di­methyl-2-oxo-4-(quinolin-4-yl)-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aSTC "Institute for Single Crystals" NAS of Ukraine, 60 Lenina Ave., Kharkiv, Ukraine, bUniversity of Siegen, FB 8, Adolf Reichwein Strasse 2, 57068 Siegen, Germany, and cDepartment of Organic and Biochemical Synthesis, Kherson National Technical University, 24 Berislavske Highway, Kherson 73008, Ukraine
*Correspondence e-mail: roman@xray.isc.kharkov.com

(Received 12 May 2010; accepted 17 June 2010; online 23 June 2010)

In the title compound, C18H19N3O3, the tetra­hydro­pyrimidone ring adopts a distorted boat conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further linked via inter­molecular C—H⋯π inter­actions. In addition, an intra­molecular C—H⋯O hydrogen bond occurs.

Related literature

It has been proposed that the combination of the biologically active dihydro­pyrimidine subunit with a DNA inter­calator (Waring, 2006[Waring, M. J. (2006). Sequence-specific DNA binding agents. Cambridge: RSC Publishing.]; Hannon, 2007[Hannon, M. J. (2007). Chem. Soc. Rev. 36, 280-295.]; Ihmels & Otto, 2005[Ihmels, H. & Otto, D. (2005). Top. Curr. Chem. 258, 161-204.]) may lead to a new class of DNA-targeting drugs (Neidle & Thurston, 2005[Neidle, S. & Thurston, D. E. (2005). Nat. Rev. Cancer, 5, 285-296.]; Braña et al., 2001[Braña, M. F., Cacho, M., Gradillas, A., Pascual-Teresa, B. & Ramos, A. (2001). Curr. Pharm. Des. 7, 1745-1780.]). Thus, a classical DNA intercalator, namely quinoline (Denny, 2003[Denny, W. A. (2003). DNA and RNA Binders: From Small Molecules to Drugs. Weinheim: Wiley-VCH.]; Kharatishvili et al., 1997[Kharatishvili, M., Mathieson, M. & Farrell, N. (1997). Inorg. Chim. Acta, 255, 1-6.]; Aislabie et al., 1990[Aislabie, J., Bej, A. K., Rothenburger, S. & Atlas, R. M. (1990). Appl. Environ. Microbiol. 56, 345-351.]), was employed as quinoline-4-carbaldehyde in the Biginelli (1893[Biginelli, P. (1893). Gazz. Chim. Ital. 23, 360-412.]) reaction that leads to the title compound. For the biological activity of pyrimidine-containing compounds, see: Goldmann & Stoltefuss (1991[Goldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559-1578.]); McKinstry & Reading (1944[McKinstry, D. W. & Reading, E. H. (1944). J. Franklin. Inst. 237, 422-427.]); Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]); Luo et al. (2004[Luo, L., Carson, J. D., Dhanak, D., Jackson, J. R., Huang, P. S., Lee, Y., Sakowicz, R. & Copeland, R. A. (2004). Biochemistry, 43, 15258-15266.]). For van der Waals radii, see: Zefirov & Zorky (1989[Zefirov, Yu. V. & Zorky, P. M. (1989). Russ. Chem. Rev. 58, 421-440.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N3O3

  • Mr = 325.36

  • Triclinic, [P \overline 1]

  • a = 8.5039 (10) Å

  • b = 9.4637 (11) Å

  • c = 10.7503 (11) Å

  • α = 110.799 (10)°

  • β = 95.807 (9)°

  • γ = 97.339 (9)°

  • V = 792.07 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire3 detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.975, Tmax = 1

  • 8517 measured reflections

  • 4607 independent reflections

  • 2810 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 0.99

  • 4607 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 2.03 2.8701 (16) 164
C17—H17A⋯O2 0.96 2.16 2.8187 (19) 124
C16—H16CCg1ii 0.96 2.66 3.603 (2) 168
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Pyrimidine-containing compounds exhibit a wide spectrum of biological activity (Goldmann & Stoltefuss, 1991). For example, dihydropyrimidines derivatives (DHPMs) may be applied as antimicrobial (McKinstry & Reading, 1944), anti-inflammatory (Kappe, 2000), anticarcenogenic drugs (Luo et al., 2004). A three-component condensation of urea derivatives with aromatic aldehydes and β-ketoesters, known as Biginelli reaction allows the synthesis of the DHPM unit with a widely modified and variable substitution pattern. It was proposed that the combination of the biologically active DHPM subunit with a DNA intercalator (Waring, 2006; Hannon, 2007; Ihmels & Otto, 2005) may lead to a new class of DNA-targeting drugs (Neidle & Thurston, 2005; Braña et al., 2001). Thus, a classical DNA, namely quinoline (Denny, 2003; Kharatishvili et al., 1997; Aislabie et al., 1990), was employed as quinoline-4-carbaldehyde in the Biginelli reaction according to traditional reaction conditions in ethanol employing hydrochloric acid as catalyst (Biginelli, 1893) leading to the title compound (Fig. 1).

Tetrahydropyrimidone ring adopts a distorted boat conformation with the C1, C2, C3 and N1 atoms almost coplanar (dihedral angle of 1.47 (18)°), while the C4 and N2 atoms deviated from this plane by -0.342 (2) Å and -0.481 (2) Å, respectively. This non-planariry is probably additionally supported by steric repulsion between methyl groups at the C3 and N1 atoms (short intramolecular contacts C17···H18a 2.55 Å and C18···C17a 2.57 Å while van der Waals radii sum is 2.87 Å, Zefirov & Zorky, 1989). Quinoline substituent has axial orientation (the C4—N2—C1—C5 torsion angle of -95.03 (14)°) and rotated almost coplanar to the C1—C2 bond (dihedral angle of -13.55 (16)°) despite short intramolecular contact H6···C2 2.48 Å (van der Waals radii sum is 2.87 Å, Zefirov & Zorky, 1989). Ester substituent at the C2 atom slightly rotated with respect to C1/C2/C3/N1 fragment (the C1—C2—C14—O1 torsion angle of -24.96 (18)°) supporting formation of attractive intramolecular contact O1···H1 2.44 Å (van der Waals radii sum of 2.46 Å). The ester substituent rotation is accompanied by formation of short intramolecular C17—H17c···O2 hydrogen bond.

The crystal packing (Fig. 2) is stabilized by intramolecular C—H···O and intermolecular N—H···O hydrogen bonds between adjacent amide fragments of pyrimidine ring, with a N2—H2···O3i (Table 1). The molecular packing (Fig. 2) is further stabilized by an intermolecular C—H···π interaction between the methyl H atom of the ethyl group and the pyridine ring of a neighbouring quinoline system, with a C16—H16C···Cg1ii.

(Table 1; Cg1 is the centroid of the C5/C6/C7/N3/C8/C13 pyridine ring).

Related literature top

It has been proposed that the combination of the biologically active dihydropyrimidine subunit with a DNA intercalator (Waring, 2006; Hannon, 2007; Ihmels & Otto, 2005) may lead to a new class of DNA-targeting drugs (Neidle & Thurston, 2005; Braña et al., 2001). Thus, a classical DNA, namely quinoline (Denny, 2003; Kharatishvili et al., 1997; Aislabie et al., 1990), was employed as quinoline-4-carbaldehyde in the Biginelli (1893) reaction that lead to the title compound. For the biological activity of pyrimidine-containing compounds, see: Goldmann & Stoltefuss (1991); McKinstry & Reading (1944); Kappe (2000); Luo et al. (2004). For van der Waals radii, see: Zefirov & Zorky (1989).

Experimental top

The title compound was synthesized by refluxing condition of monomethylurea (0.237 g, 3.20 mmol), 4-quinoline aldehyde (0.502 g, 3.20 mmol), acetoacetic ester (0.520 g, 4.00 mmol) with catalytic amount of HCl in 15 ml EtOH. The residue was purified by column chromatography (silica gel, hexane–acetone, 90:5 v/v) to afforded the title compound as a colorless solid (yield 48%, m.p. 472 K). The single crystals suitable for X-ray diffraction were obtained by evaporation of a solution of the title compound in acetone.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d (N—H) = 0.86 Å, d (C—H) = 0.93–0.98 Å and Uiso(H) = 1.2–1.5 Ueq (parent atom).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. N—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) x, - y + 1, z ; (ii) - x, - y + 1, - z. ]
Ethyl 1,6-dimethyl-2-oxo-4-(quinolin-4-yl)-1,2,3,4-tetrahydropyrimidine-5- carboxylate top
Crystal data top
C18H19N3O3Z = 2
Mr = 325.36F(000) = 344
Triclinic, P1Dx = 1.364 Mg m3
a = 8.5039 (10) ÅMo Kα radiation, λ = 0.7107 Å
b = 9.4637 (11) ÅCell parameters from 3300 reflections
c = 10.7503 (11) Åθ = 3.1–32.4°
α = 110.799 (10)°µ = 0.10 mm1
β = 95.807 (9)°T = 293 K
γ = 97.339 (9)°Prism, colorless
V = 792.07 (17) Å30.4 × 0.3 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire3 detector
4607 independent reflections
Graphite monochromator2810 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.017
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1212
Tmin = 0.975, Tmax = 1k = 1413
8517 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
4607 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H19N3O3γ = 97.339 (9)°
Mr = 325.36V = 792.07 (17) Å3
Triclinic, P1Z = 2
a = 8.5039 (10) ÅMo Kα radiation
b = 9.4637 (11) ŵ = 0.10 mm1
c = 10.7503 (11) ÅT = 293 K
α = 110.799 (10)°0.4 × 0.3 × 0.2 mm
β = 95.807 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire3 detector
4607 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2810 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 1Rint = 0.017
8517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 0.99Δρmax = 0.30 e Å3
4607 reflectionsΔρmin = 0.17 e Å3
220 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27163 (12)0.04049 (12)0.18120 (11)0.0531 (3)
O20.06327 (12)0.03288 (11)0.26749 (11)0.0499 (3)
O30.17806 (12)0.43713 (11)0.03648 (11)0.0505 (3)
N10.19236 (12)0.24916 (11)0.12189 (11)0.0342 (2)
N20.05174 (13)0.36177 (12)0.09001 (11)0.0392 (3)
H20.10190.40880.04640.047*
N30.34211 (15)0.63743 (12)0.56698 (12)0.0471 (3)
C10.14609 (14)0.29466 (13)0.16757 (12)0.0315 (3)
H10.23450.25990.11970.038*
C20.04233 (15)0.15552 (12)0.17321 (12)0.0317 (3)
C30.11880 (15)0.13846 (13)0.15232 (12)0.0324 (3)
C40.10723 (16)0.35587 (13)0.08131 (13)0.0355 (3)
C50.21887 (13)0.41308 (12)0.30752 (12)0.0297 (3)
C60.16516 (16)0.40622 (14)0.42047 (13)0.0377 (3)
H60.08500.32610.41390.045*
C70.23041 (18)0.51977 (16)0.54688 (15)0.0467 (3)
H70.19130.51060.62190.056*
C80.40063 (15)0.64740 (14)0.45630 (14)0.0385 (3)
C90.52172 (17)0.77391 (15)0.47649 (16)0.0497 (4)
H90.55800.84620.56310.060*
C100.58558 (18)0.79118 (17)0.37115 (18)0.0562 (4)
H100.66450.87540.38560.067*
C110.53288 (17)0.68249 (17)0.24086 (17)0.0519 (4)
H110.57850.69420.16930.062*
C120.41510 (15)0.55914 (15)0.21731 (15)0.0390 (3)
H120.38100.48860.12980.047*
C130.34461 (13)0.53745 (13)0.32394 (13)0.0315 (3)
C140.13704 (16)0.04890 (13)0.20431 (13)0.0356 (3)
C150.14436 (18)0.14639 (16)0.29605 (17)0.0488 (4)
H15B0.24560.09720.35550.059*
H15A0.16590.22070.21330.059*
C160.0369 (2)0.2227 (2)0.3611 (2)0.0799 (7)
H16B0.01630.14790.44260.120*
H16C0.08690.29870.38200.120*
H16A0.06250.27120.30110.120*
C170.23434 (17)0.00572 (15)0.15444 (17)0.0485 (4)
H17C0.28720.03950.23190.073*
H17A0.17690.07380.15870.073*
H17B0.31280.03340.07410.073*
C180.36752 (16)0.23559 (17)0.09982 (16)0.0475 (4)
H18B0.41120.20700.16820.071*
H18A0.41110.15850.01270.071*
H18C0.39490.33240.10410.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0463 (6)0.0626 (6)0.0668 (8)0.0204 (5)0.0161 (5)0.0384 (6)
O20.0498 (6)0.0499 (6)0.0725 (8)0.0210 (4)0.0171 (5)0.0433 (5)
O30.0463 (6)0.0575 (6)0.0623 (7)0.0094 (4)0.0002 (5)0.0421 (5)
N10.0347 (6)0.0355 (5)0.0355 (6)0.0048 (4)0.0016 (5)0.0183 (4)
N20.0379 (6)0.0459 (6)0.0416 (7)0.0001 (4)0.0010 (5)0.0301 (5)
N30.0521 (7)0.0459 (6)0.0369 (7)0.0003 (5)0.0004 (5)0.0124 (5)
C10.0329 (6)0.0319 (6)0.0324 (7)0.0051 (4)0.0036 (5)0.0158 (5)
C20.0381 (7)0.0275 (5)0.0289 (6)0.0034 (4)0.0012 (5)0.0116 (5)
C30.0402 (7)0.0296 (6)0.0269 (6)0.0027 (5)0.0009 (5)0.0121 (5)
C40.0411 (7)0.0368 (6)0.0296 (7)0.0030 (5)0.0012 (5)0.0167 (5)
C50.0295 (6)0.0295 (5)0.0328 (7)0.0078 (4)0.0026 (5)0.0146 (5)
C60.0416 (7)0.0358 (6)0.0359 (7)0.0016 (5)0.0053 (6)0.0157 (5)
C70.0571 (9)0.0482 (8)0.0337 (8)0.0036 (6)0.0072 (7)0.0159 (6)
C80.0363 (7)0.0372 (7)0.0396 (8)0.0042 (5)0.0017 (6)0.0144 (6)
C90.0433 (8)0.0428 (8)0.0538 (10)0.0051 (6)0.0066 (7)0.0151 (6)
C100.0433 (9)0.0512 (9)0.0716 (12)0.0093 (6)0.0034 (8)0.0291 (8)
C110.0426 (8)0.0599 (9)0.0618 (11)0.0003 (7)0.0095 (7)0.0354 (8)
C120.0341 (7)0.0441 (7)0.0423 (8)0.0059 (5)0.0042 (6)0.0210 (6)
C130.0271 (6)0.0326 (6)0.0380 (7)0.0067 (4)0.0012 (5)0.0174 (5)
C140.0416 (7)0.0309 (6)0.0335 (7)0.0057 (5)0.0023 (6)0.0123 (5)
C150.0510 (8)0.0454 (8)0.0646 (10)0.0194 (6)0.0091 (7)0.0341 (7)
C160.0721 (12)0.0777 (12)0.136 (2)0.0347 (10)0.0407 (13)0.0815 (13)
C170.0440 (8)0.0434 (7)0.0608 (10)0.0029 (6)0.0011 (7)0.0289 (7)
C180.0372 (8)0.0574 (8)0.0553 (10)0.0096 (6)0.0063 (7)0.0297 (7)
Geometric parameters (Å, º) top
O1—C141.2018 (15)C8—C91.4125 (18)
O2—C141.3377 (15)C8—C131.4207 (18)
O2—C151.4504 (14)C9—C101.356 (2)
O3—C41.2283 (14)C9—H90.9300
N1—C41.3871 (15)C10—C111.397 (2)
N1—C31.4019 (14)C10—H100.9300
N1—C181.4662 (16)C11—C121.3676 (18)
N2—C41.3380 (16)C11—H110.9300
N2—C11.4538 (14)C12—C131.4103 (18)
N2—H20.8600C12—H120.9300
N3—C71.3061 (17)C15—C161.471 (2)
N3—C81.3637 (18)C15—H15B0.9700
C1—C21.5122 (15)C15—H15A0.9700
C1—C51.5293 (17)C16—H16B0.9600
C1—H10.9800C16—H16C0.9600
C2—C31.3451 (17)C16—H16A0.9600
C2—C141.4735 (16)C17—H17C0.9600
C3—C171.5012 (16)C17—H17A0.9600
C5—C61.3591 (17)C17—H17B0.9600
C5—C131.4330 (15)C18—H18B0.9600
C6—C71.4022 (19)C18—H18A0.9600
C6—H60.9300C18—H18C0.9600
C7—H70.9300
C14—O2—C15117.81 (10)C9—C10—H10120.0
C4—N1—C3121.22 (10)C11—C10—H10120.0
C4—N1—C18115.73 (10)C12—C11—C10120.81 (14)
C3—N1—C18121.48 (10)C12—C11—H11119.6
C4—N2—C1124.96 (10)C10—C11—H11119.6
C4—N2—H2117.5C11—C12—C13120.95 (13)
C1—N2—H2117.5C11—C12—H12119.5
C7—N3—C8116.88 (12)C13—C12—H12119.5
N2—C1—C2108.97 (10)C12—C13—C8117.82 (11)
N2—C1—C5111.30 (9)C12—C13—C5124.39 (12)
C2—C1—C5112.65 (10)C8—C13—C5117.79 (11)
N2—C1—H1107.9O1—C14—O2122.41 (11)
C2—C1—H1107.9O1—C14—C2123.48 (11)
C5—C1—H1107.9O2—C14—C2114.03 (11)
C3—C2—C14126.27 (11)O2—C15—C16106.99 (11)
C3—C2—C1120.96 (10)O2—C15—H15B110.3
C14—C2—C1112.77 (10)C16—C15—H15B110.3
C2—C3—N1119.79 (10)O2—C15—H15A110.3
C2—C3—C17125.97 (11)C16—C15—H15A110.3
N1—C3—C17114.21 (11)H15B—C15—H15A108.6
O3—C4—N2122.75 (11)C15—C16—H16B109.5
O3—C4—N1120.25 (12)C15—C16—H16C109.5
N2—C4—N1116.98 (10)H16B—C16—H16C109.5
C6—C5—C13117.48 (11)C15—C16—H16A109.5
C6—C5—C1121.55 (10)H16B—C16—H16A109.5
C13—C5—C1120.96 (10)H16C—C16—H16A109.5
C5—C6—C7120.17 (12)C3—C17—H17C109.5
C5—C6—H6119.9C3—C17—H17A109.5
C7—C6—H6119.9H17C—C17—H17A109.5
N3—C7—C6124.77 (13)C3—C17—H17B109.5
N3—C7—H7117.6H17C—C17—H17B109.5
C6—C7—H7117.6H17A—C17—H17B109.5
N3—C8—C9117.53 (13)N1—C18—H18B109.5
N3—C8—C13122.88 (11)N1—C18—H18A109.5
C9—C8—C13119.59 (13)H18B—C18—H18A109.5
C10—C9—C8120.78 (14)N1—C18—H18C109.5
C10—C9—H9119.6H18B—C18—H18C109.5
C8—C9—H9119.6H18A—C18—H18C109.5
C9—C10—C11120.05 (13)
C4—N2—C1—C229.78 (16)C8—N3—C7—C61.4 (2)
C4—N2—C1—C595.05 (13)C5—C6—C7—N30.6 (2)
N2—C1—C2—C321.57 (16)C7—N3—C8—C9179.87 (13)
C5—C1—C2—C3102.47 (13)C7—N3—C8—C130.41 (19)
N2—C1—C2—C14159.04 (10)N3—C8—C9—C10179.93 (13)
C5—C1—C2—C1476.92 (13)C13—C8—C9—C100.3 (2)
C14—C2—C3—N1179.22 (11)C8—C9—C10—C110.6 (2)
C1—C2—C3—N11.47 (18)C9—C10—C11—C121.0 (2)
C14—C2—C3—C171.0 (2)C10—C11—C12—C130.6 (2)
C1—C2—C3—C17179.65 (12)C11—C12—C13—C80.31 (18)
C4—N1—C3—C215.51 (18)C11—C12—C13—C5178.85 (12)
C18—N1—C3—C2179.37 (12)N3—C8—C13—C12179.52 (11)
C4—N1—C3—C17162.87 (11)C9—C8—C13—C120.77 (17)
C18—N1—C3—C172.25 (17)N3—C8—C13—C51.27 (17)
C1—N2—C4—O3165.93 (12)C9—C8—C13—C5178.45 (11)
C1—N2—C4—N115.95 (18)C6—C5—C13—C12178.85 (11)
C3—N1—C4—O3169.42 (12)C1—C5—C13—C122.32 (17)
C18—N1—C4—O33.50 (18)C6—C5—C13—C81.99 (15)
C3—N1—C4—N28.75 (18)C1—C5—C13—C8176.84 (10)
C18—N1—C4—N2174.68 (12)C15—O2—C14—O16.3 (2)
N2—C1—C5—C6109.13 (12)C15—O2—C14—C2176.97 (11)
C2—C1—C5—C613.61 (15)C3—C2—C14—O1155.76 (13)
N2—C1—C5—C1369.65 (13)C1—C2—C14—O124.89 (18)
C2—C1—C5—C13167.60 (10)C3—C2—C14—O227.58 (19)
C13—C5—C6—C71.16 (17)C1—C2—C14—O2151.78 (11)
C1—C5—C6—C7177.67 (11)C14—O2—C15—C16178.22 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.032.8701 (16)164
C17—H17A···O20.962.162.8187 (19)124
C16—H16C···Cg1ii0.962.663.603 (2)168
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H19N3O3
Mr325.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5039 (10), 9.4637 (11), 10.7503 (11)
α, β, γ (°)110.799 (10), 95.807 (9), 97.339 (9)
V3)792.07 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire3 detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.975, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
8517, 4607, 2810
Rint0.017
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 0.99
No. of reflections4607
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), Superflip (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.032.8701 (16)164
C17—H17A···O20.962.162.8187 (19)124
C16—H16C···Cg1ii0.962.663.603 (2)168
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

The authors are grateful to the DAAD (Deutscher Akademischer Austausch Dienst) for a research scholarship.

References

First citationAislabie, J., Bej, A. K., Rothenburger, S. & Atlas, R. M. (1990). Appl. Environ. Microbiol. 56, 345–351.  Google Scholar
First citationBiginelli, P. (1893). Gazz. Chim. Ital. 23, 360–412.  Google Scholar
First citationBraña, M. F., Cacho, M., Gradillas, A., Pascual-Teresa, B. & Ramos, A. (2001). Curr. Pharm. Des. 7, 1745–1780.  Web of Science PubMed Google Scholar
First citationDenny, W. A. (2003). DNA and RNA Binders: From Small Molecules to Drugs. Weinheim: Wiley-VCH.  Google Scholar
First citationGoldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559–1578.  CrossRef Web of Science Google Scholar
First citationHannon, M. J. (2007). Chem. Soc. Rev. 36, 280–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIhmels, H. & Otto, D. (2005). Top. Curr. Chem. 258, 161–204.  Web of Science CrossRef CAS Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKharatishvili, M., Mathieson, M. & Farrell, N. (1997). Inorg. Chim. Acta, 255, 1–6.  CrossRef CAS Web of Science Google Scholar
First citationLuo, L., Carson, J. D., Dhanak, D., Jackson, J. R., Huang, P. S., Lee, Y., Sakowicz, R. & Copeland, R. A. (2004). Biochemistry, 43, 15258–15266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcKinstry, D. W. & Reading, E. H. (1944). J. Franklin. Inst. 237, 422–427.  CAS Google Scholar
First citationNeidle, S. & Thurston, D. E. (2005). Nat. Rev. Cancer, 5, 285–296.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaring, M. J. (2006). Sequence-specific DNA binding agents. Cambridge: RSC Publishing.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationZefirov, Yu. V. & Zorky, P. M. (1989). Russ. Chem. Rev. 58, 421–440.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1762-o1763
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds