organic compounds
Ethyl 1,6-dimethyl-2-oxo-4-(quinolin-4-yl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate
aSTC "Institute for Single Crystals" NAS of Ukraine, 60 Lenina Ave., Kharkiv, Ukraine, bUniversity of Siegen, FB 8, Adolf Reichwein Strasse 2, 57068 Siegen, Germany, and cDepartment of Organic and Biochemical Synthesis, Kherson National Technical University, 24 Berislavske Highway, Kherson 73008, Ukraine
*Correspondence e-mail: roman@xray.isc.kharkov.com
In the title compound, C18H19N3O3, the tetrahydropyrimidone ring adopts a distorted boat conformation. In the intermolecular N—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers, which are further linked via intermolecular C—H⋯π interactions. In addition, an intramolecular C—H⋯O hydrogen bond occurs.
Related literature
It has been proposed that the combination of the biologically active dihydropyrimidine subunit with a DNA intercalator (Waring, 2006; Hannon, 2007; Ihmels & Otto, 2005) may lead to a new class of DNA-targeting drugs (Neidle & Thurston, 2005; Braña et al., 2001). Thus, a classical DNA intercalator, namely quinoline (Denny, 2003; Kharatishvili et al., 1997; Aislabie et al., 1990), was employed as quinoline-4-carbaldehyde in the Biginelli (1893) reaction that leads to the title compound. For the biological activity of pyrimidine-containing compounds, see: Goldmann & Stoltefuss (1991); McKinstry & Reading (1944); Kappe (2000); Luo et al. (2004). For van der Waals radii, see: Zefirov & Zorky (1989).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810023482/lx2153sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810023482/lx2153Isup2.hkl
The title compound was synthesized by refluxing condition of monomethylurea (0.237 g, 3.20 mmol), 4-quinoline aldehyde (0.502 g, 3.20 mmol), acetoacetic ester (0.520 g, 4.00 mmol) with catalytic amount of HCl in 15 ml EtOH. The residue was purified by
(silica gel, hexane–acetone, 90:5 v/v) to afforded the title compound as a colorless solid (yield 48%, m.p. 472 K). The single crystals suitable for X-ray diffraction were obtained by evaporation of a solution of the title compound in acetone.All H-atoms were positioned geometrically and refined using a riding model with d (N—H) = 0.86 Å, d (C—H) = 0.93–0.98 Å and Uiso(H) = 1.2–1.5 Ueq (parent atom).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C18H19N3O3 | Z = 2 |
Mr = 325.36 | F(000) = 344 |
Triclinic, P1 | Dx = 1.364 Mg m−3 |
a = 8.5039 (10) Å | Mo Kα radiation, λ = 0.7107 Å |
b = 9.4637 (11) Å | Cell parameters from 3300 reflections |
c = 10.7503 (11) Å | θ = 3.1–32.4° |
α = 110.799 (10)° | µ = 0.10 mm−1 |
β = 95.807 (9)° | T = 293 K |
γ = 97.339 (9)° | Prism, colorless |
V = 792.07 (17) Å3 | 0.4 × 0.3 × 0.2 mm |
Oxford Diffraction Xcalibur diffractometer with Sapphire3 detector | 4607 independent reflections |
Graphite monochromator | 2810 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | Rint = 0.017 |
ω scans | θmax = 30.0°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −12→12 |
Tmin = 0.975, Tmax = 1 | k = −14→13 |
8517 measured reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.060P)2] where P = (Fo2 + 2Fc2)/3 |
4607 reflections | (Δ/σ)max = 0.001 |
220 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C18H19N3O3 | γ = 97.339 (9)° |
Mr = 325.36 | V = 792.07 (17) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.5039 (10) Å | Mo Kα radiation |
b = 9.4637 (11) Å | µ = 0.10 mm−1 |
c = 10.7503 (11) Å | T = 293 K |
α = 110.799 (10)° | 0.4 × 0.3 × 0.2 mm |
β = 95.807 (9)° |
Oxford Diffraction Xcalibur diffractometer with Sapphire3 detector | 4607 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2810 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 1 | Rint = 0.017 |
8517 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.30 e Å−3 |
4607 reflections | Δρmin = −0.17 e Å−3 |
220 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27163 (12) | 0.04049 (12) | 0.18120 (11) | 0.0531 (3) | |
O2 | 0.06327 (12) | −0.03288 (11) | 0.26749 (11) | 0.0499 (3) | |
O3 | −0.17806 (12) | 0.43713 (11) | 0.03648 (11) | 0.0505 (3) | |
N1 | −0.19236 (12) | 0.24916 (11) | 0.12189 (11) | 0.0342 (2) | |
N2 | 0.05174 (13) | 0.36177 (12) | 0.09001 (11) | 0.0392 (3) | |
H2 | 0.1019 | 0.4088 | 0.0464 | 0.047* | |
N3 | 0.34211 (15) | 0.63743 (12) | 0.56698 (12) | 0.0471 (3) | |
C1 | 0.14609 (14) | 0.29466 (13) | 0.16757 (12) | 0.0315 (3) | |
H1 | 0.2345 | 0.2599 | 0.1197 | 0.038* | |
C2 | 0.04233 (15) | 0.15552 (12) | 0.17321 (12) | 0.0317 (3) | |
C3 | −0.11880 (15) | 0.13846 (13) | 0.15232 (12) | 0.0324 (3) | |
C4 | −0.10723 (16) | 0.35587 (13) | 0.08131 (13) | 0.0355 (3) | |
C5 | 0.21887 (13) | 0.41308 (12) | 0.30752 (12) | 0.0297 (3) | |
C6 | 0.16516 (16) | 0.40622 (14) | 0.42047 (13) | 0.0377 (3) | |
H6 | 0.0850 | 0.3261 | 0.4139 | 0.045* | |
C7 | 0.23041 (18) | 0.51977 (16) | 0.54688 (15) | 0.0467 (3) | |
H7 | 0.1913 | 0.5106 | 0.6219 | 0.056* | |
C8 | 0.40063 (15) | 0.64740 (14) | 0.45630 (14) | 0.0385 (3) | |
C9 | 0.52172 (17) | 0.77391 (15) | 0.47649 (16) | 0.0497 (4) | |
H9 | 0.5580 | 0.8462 | 0.5631 | 0.060* | |
C10 | 0.58558 (18) | 0.79118 (17) | 0.37115 (18) | 0.0562 (4) | |
H10 | 0.6645 | 0.8754 | 0.3856 | 0.067* | |
C11 | 0.53288 (17) | 0.68249 (17) | 0.24086 (17) | 0.0519 (4) | |
H11 | 0.5785 | 0.6942 | 0.1693 | 0.062* | |
C12 | 0.41510 (15) | 0.55914 (15) | 0.21731 (15) | 0.0390 (3) | |
H12 | 0.3810 | 0.4886 | 0.1298 | 0.047* | |
C13 | 0.34461 (13) | 0.53745 (13) | 0.32394 (13) | 0.0315 (3) | |
C14 | 0.13704 (16) | 0.04890 (13) | 0.20431 (13) | 0.0356 (3) | |
C15 | 0.14436 (18) | −0.14639 (16) | 0.29605 (17) | 0.0488 (4) | |
H15B | 0.2456 | −0.0972 | 0.3555 | 0.059* | |
H15A | 0.1659 | −0.2207 | 0.2133 | 0.059* | |
C16 | 0.0369 (2) | −0.2227 (2) | 0.3611 (2) | 0.0799 (7) | |
H16B | 0.0163 | −0.1479 | 0.4426 | 0.120* | |
H16C | 0.0869 | −0.2987 | 0.3820 | 0.120* | |
H16A | −0.0625 | −0.2712 | 0.3011 | 0.120* | |
C17 | −0.23434 (17) | 0.00572 (15) | 0.15444 (17) | 0.0485 (4) | |
H17C | −0.2872 | 0.0395 | 0.2319 | 0.073* | |
H17A | −0.1769 | −0.0738 | 0.1587 | 0.073* | |
H17B | −0.3128 | −0.0334 | 0.0741 | 0.073* | |
C18 | −0.36752 (16) | 0.23559 (17) | 0.09982 (16) | 0.0475 (4) | |
H18B | −0.4112 | 0.2070 | 0.1682 | 0.071* | |
H18A | −0.4111 | 0.1585 | 0.0127 | 0.071* | |
H18C | −0.3949 | 0.3324 | 0.1041 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0463 (6) | 0.0626 (6) | 0.0668 (8) | 0.0204 (5) | 0.0161 (5) | 0.0384 (6) |
O2 | 0.0498 (6) | 0.0499 (6) | 0.0725 (8) | 0.0210 (4) | 0.0171 (5) | 0.0433 (5) |
O3 | 0.0463 (6) | 0.0575 (6) | 0.0623 (7) | 0.0094 (4) | 0.0002 (5) | 0.0421 (5) |
N1 | 0.0347 (6) | 0.0355 (5) | 0.0355 (6) | 0.0048 (4) | 0.0016 (5) | 0.0183 (4) |
N2 | 0.0379 (6) | 0.0459 (6) | 0.0416 (7) | 0.0001 (4) | −0.0010 (5) | 0.0301 (5) |
N3 | 0.0521 (7) | 0.0459 (6) | 0.0369 (7) | 0.0003 (5) | 0.0004 (5) | 0.0124 (5) |
C1 | 0.0329 (6) | 0.0319 (6) | 0.0324 (7) | 0.0051 (4) | 0.0036 (5) | 0.0158 (5) |
C2 | 0.0381 (7) | 0.0275 (5) | 0.0289 (6) | 0.0034 (4) | 0.0012 (5) | 0.0116 (5) |
C3 | 0.0402 (7) | 0.0296 (6) | 0.0269 (6) | 0.0027 (5) | 0.0009 (5) | 0.0121 (5) |
C4 | 0.0411 (7) | 0.0368 (6) | 0.0296 (7) | 0.0030 (5) | −0.0012 (5) | 0.0167 (5) |
C5 | 0.0295 (6) | 0.0295 (5) | 0.0328 (7) | 0.0078 (4) | 0.0026 (5) | 0.0146 (5) |
C6 | 0.0416 (7) | 0.0358 (6) | 0.0359 (7) | 0.0016 (5) | 0.0053 (6) | 0.0157 (5) |
C7 | 0.0571 (9) | 0.0482 (8) | 0.0337 (8) | 0.0036 (6) | 0.0072 (7) | 0.0159 (6) |
C8 | 0.0363 (7) | 0.0372 (7) | 0.0396 (8) | 0.0042 (5) | −0.0017 (6) | 0.0144 (6) |
C9 | 0.0433 (8) | 0.0428 (8) | 0.0538 (10) | −0.0051 (6) | −0.0066 (7) | 0.0151 (6) |
C10 | 0.0433 (9) | 0.0512 (9) | 0.0716 (12) | −0.0093 (6) | −0.0034 (8) | 0.0291 (8) |
C11 | 0.0426 (8) | 0.0599 (9) | 0.0618 (11) | 0.0003 (7) | 0.0095 (7) | 0.0354 (8) |
C12 | 0.0341 (7) | 0.0441 (7) | 0.0423 (8) | 0.0059 (5) | 0.0042 (6) | 0.0210 (6) |
C13 | 0.0271 (6) | 0.0326 (6) | 0.0380 (7) | 0.0067 (4) | 0.0012 (5) | 0.0174 (5) |
C14 | 0.0416 (7) | 0.0309 (6) | 0.0335 (7) | 0.0057 (5) | 0.0023 (6) | 0.0123 (5) |
C15 | 0.0510 (8) | 0.0454 (8) | 0.0646 (10) | 0.0194 (6) | 0.0091 (7) | 0.0341 (7) |
C16 | 0.0721 (12) | 0.0777 (12) | 0.136 (2) | 0.0347 (10) | 0.0407 (13) | 0.0815 (13) |
C17 | 0.0440 (8) | 0.0434 (7) | 0.0608 (10) | −0.0029 (6) | −0.0011 (7) | 0.0289 (7) |
C18 | 0.0372 (8) | 0.0574 (8) | 0.0553 (10) | 0.0096 (6) | 0.0063 (7) | 0.0297 (7) |
O1—C14 | 1.2018 (15) | C8—C9 | 1.4125 (18) |
O2—C14 | 1.3377 (15) | C8—C13 | 1.4207 (18) |
O2—C15 | 1.4504 (14) | C9—C10 | 1.356 (2) |
O3—C4 | 1.2283 (14) | C9—H9 | 0.9300 |
N1—C4 | 1.3871 (15) | C10—C11 | 1.397 (2) |
N1—C3 | 1.4019 (14) | C10—H10 | 0.9300 |
N1—C18 | 1.4662 (16) | C11—C12 | 1.3676 (18) |
N2—C4 | 1.3380 (16) | C11—H11 | 0.9300 |
N2—C1 | 1.4538 (14) | C12—C13 | 1.4103 (18) |
N2—H2 | 0.8600 | C12—H12 | 0.9300 |
N3—C7 | 1.3061 (17) | C15—C16 | 1.471 (2) |
N3—C8 | 1.3637 (18) | C15—H15B | 0.9700 |
C1—C2 | 1.5122 (15) | C15—H15A | 0.9700 |
C1—C5 | 1.5293 (17) | C16—H16B | 0.9600 |
C1—H1 | 0.9800 | C16—H16C | 0.9600 |
C2—C3 | 1.3451 (17) | C16—H16A | 0.9600 |
C2—C14 | 1.4735 (16) | C17—H17C | 0.9600 |
C3—C17 | 1.5012 (16) | C17—H17A | 0.9600 |
C5—C6 | 1.3591 (17) | C17—H17B | 0.9600 |
C5—C13 | 1.4330 (15) | C18—H18B | 0.9600 |
C6—C7 | 1.4022 (19) | C18—H18A | 0.9600 |
C6—H6 | 0.9300 | C18—H18C | 0.9600 |
C7—H7 | 0.9300 | ||
C14—O2—C15 | 117.81 (10) | C9—C10—H10 | 120.0 |
C4—N1—C3 | 121.22 (10) | C11—C10—H10 | 120.0 |
C4—N1—C18 | 115.73 (10) | C12—C11—C10 | 120.81 (14) |
C3—N1—C18 | 121.48 (10) | C12—C11—H11 | 119.6 |
C4—N2—C1 | 124.96 (10) | C10—C11—H11 | 119.6 |
C4—N2—H2 | 117.5 | C11—C12—C13 | 120.95 (13) |
C1—N2—H2 | 117.5 | C11—C12—H12 | 119.5 |
C7—N3—C8 | 116.88 (12) | C13—C12—H12 | 119.5 |
N2—C1—C2 | 108.97 (10) | C12—C13—C8 | 117.82 (11) |
N2—C1—C5 | 111.30 (9) | C12—C13—C5 | 124.39 (12) |
C2—C1—C5 | 112.65 (10) | C8—C13—C5 | 117.79 (11) |
N2—C1—H1 | 107.9 | O1—C14—O2 | 122.41 (11) |
C2—C1—H1 | 107.9 | O1—C14—C2 | 123.48 (11) |
C5—C1—H1 | 107.9 | O2—C14—C2 | 114.03 (11) |
C3—C2—C14 | 126.27 (11) | O2—C15—C16 | 106.99 (11) |
C3—C2—C1 | 120.96 (10) | O2—C15—H15B | 110.3 |
C14—C2—C1 | 112.77 (10) | C16—C15—H15B | 110.3 |
C2—C3—N1 | 119.79 (10) | O2—C15—H15A | 110.3 |
C2—C3—C17 | 125.97 (11) | C16—C15—H15A | 110.3 |
N1—C3—C17 | 114.21 (11) | H15B—C15—H15A | 108.6 |
O3—C4—N2 | 122.75 (11) | C15—C16—H16B | 109.5 |
O3—C4—N1 | 120.25 (12) | C15—C16—H16C | 109.5 |
N2—C4—N1 | 116.98 (10) | H16B—C16—H16C | 109.5 |
C6—C5—C13 | 117.48 (11) | C15—C16—H16A | 109.5 |
C6—C5—C1 | 121.55 (10) | H16B—C16—H16A | 109.5 |
C13—C5—C1 | 120.96 (10) | H16C—C16—H16A | 109.5 |
C5—C6—C7 | 120.17 (12) | C3—C17—H17C | 109.5 |
C5—C6—H6 | 119.9 | C3—C17—H17A | 109.5 |
C7—C6—H6 | 119.9 | H17C—C17—H17A | 109.5 |
N3—C7—C6 | 124.77 (13) | C3—C17—H17B | 109.5 |
N3—C7—H7 | 117.6 | H17C—C17—H17B | 109.5 |
C6—C7—H7 | 117.6 | H17A—C17—H17B | 109.5 |
N3—C8—C9 | 117.53 (13) | N1—C18—H18B | 109.5 |
N3—C8—C13 | 122.88 (11) | N1—C18—H18A | 109.5 |
C9—C8—C13 | 119.59 (13) | H18B—C18—H18A | 109.5 |
C10—C9—C8 | 120.78 (14) | N1—C18—H18C | 109.5 |
C10—C9—H9 | 119.6 | H18B—C18—H18C | 109.5 |
C8—C9—H9 | 119.6 | H18A—C18—H18C | 109.5 |
C9—C10—C11 | 120.05 (13) | ||
C4—N2—C1—C2 | 29.78 (16) | C8—N3—C7—C6 | −1.4 (2) |
C4—N2—C1—C5 | −95.05 (13) | C5—C6—C7—N3 | 0.6 (2) |
N2—C1—C2—C3 | −21.57 (16) | C7—N3—C8—C9 | −179.87 (13) |
C5—C1—C2—C3 | 102.47 (13) | C7—N3—C8—C13 | 0.41 (19) |
N2—C1—C2—C14 | 159.04 (10) | N3—C8—C9—C10 | 179.93 (13) |
C5—C1—C2—C14 | −76.92 (13) | C13—C8—C9—C10 | −0.3 (2) |
C14—C2—C3—N1 | −179.22 (11) | C8—C9—C10—C11 | −0.6 (2) |
C1—C2—C3—N1 | 1.47 (18) | C9—C10—C11—C12 | 1.0 (2) |
C14—C2—C3—C17 | −1.0 (2) | C10—C11—C12—C13 | −0.6 (2) |
C1—C2—C3—C17 | 179.65 (12) | C11—C12—C13—C8 | −0.31 (18) |
C4—N1—C3—C2 | 15.51 (18) | C11—C12—C13—C5 | 178.85 (12) |
C18—N1—C3—C2 | −179.37 (12) | N3—C8—C13—C12 | −179.52 (11) |
C4—N1—C3—C17 | −162.87 (11) | C9—C8—C13—C12 | 0.77 (17) |
C18—N1—C3—C17 | 2.25 (17) | N3—C8—C13—C5 | 1.27 (17) |
C1—N2—C4—O3 | 165.93 (12) | C9—C8—C13—C5 | −178.45 (11) |
C1—N2—C4—N1 | −15.95 (18) | C6—C5—C13—C12 | 178.85 (11) |
C3—N1—C4—O3 | 169.42 (12) | C1—C5—C13—C12 | −2.32 (17) |
C18—N1—C4—O3 | 3.50 (18) | C6—C5—C13—C8 | −1.99 (15) |
C3—N1—C4—N2 | −8.75 (18) | C1—C5—C13—C8 | 176.84 (10) |
C18—N1—C4—N2 | −174.68 (12) | C15—O2—C14—O1 | −6.3 (2) |
N2—C1—C5—C6 | 109.13 (12) | C15—O2—C14—C2 | 176.97 (11) |
C2—C1—C5—C6 | −13.61 (15) | C3—C2—C14—O1 | 155.76 (13) |
N2—C1—C5—C13 | −69.65 (13) | C1—C2—C14—O1 | −24.89 (18) |
C2—C1—C5—C13 | 167.60 (10) | C3—C2—C14—O2 | −27.58 (19) |
C13—C5—C6—C7 | 1.16 (17) | C1—C2—C14—O2 | 151.78 (11) |
C1—C5—C6—C7 | −177.67 (11) | C14—O2—C15—C16 | −178.22 (14) |
Cg1 is the centroid of the C8–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3i | 0.86 | 2.03 | 2.8701 (16) | 164 |
C17—H17A···O2 | 0.96 | 2.16 | 2.8187 (19) | 124 |
C16—H16C···Cg1ii | 0.96 | 2.66 | 3.603 (2) | 168 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C18H19N3O3 |
Mr | 325.36 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.5039 (10), 9.4637 (11), 10.7503 (11) |
α, β, γ (°) | 110.799 (10), 95.807 (9), 97.339 (9) |
V (Å3) | 792.07 (17) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.4 × 0.3 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with Sapphire3 detector |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.975, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8517, 4607, 2810 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.117, 0.99 |
No. of reflections | 4607 |
No. of parameters | 220 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.17 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), Superflip (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).
Cg1 is the centroid of the C8–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3i | 0.86 | 2.03 | 2.8701 (16) | 164 |
C17—H17A···O2 | 0.96 | 2.16 | 2.8187 (19) | 124 |
C16—H16C···Cg1ii | 0.96 | 2.66 | 3.603 (2) | 168 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, y−1, z. |
Acknowledgements
The authors are grateful to the DAAD (Deutscher Akademischer Austausch Dienst) for a research scholarship.
References
Aislabie, J., Bej, A. K., Rothenburger, S. & Atlas, R. M. (1990). Appl. Environ. Microbiol. 56, 345–351. Google Scholar
Biginelli, P. (1893). Gazz. Chim. Ital. 23, 360–412. Google Scholar
Braña, M. F., Cacho, M., Gradillas, A., Pascual-Teresa, B. & Ramos, A. (2001). Curr. Pharm. Des. 7, 1745–1780. Web of Science PubMed Google Scholar
Denny, W. A. (2003). DNA and RNA Binders: From Small Molecules to Drugs. Weinheim: Wiley-VCH. Google Scholar
Goldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559–1578. CrossRef Web of Science Google Scholar
Hannon, M. J. (2007). Chem. Soc. Rev. 36, 280–295. Web of Science CrossRef PubMed CAS Google Scholar
Ihmels, H. & Otto, D. (2005). Top. Curr. Chem. 258, 161–204. Web of Science CrossRef CAS Google Scholar
Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052. Web of Science CrossRef PubMed CAS Google Scholar
Kharatishvili, M., Mathieson, M. & Farrell, N. (1997). Inorg. Chim. Acta, 255, 1–6. CrossRef CAS Web of Science Google Scholar
Luo, L., Carson, J. D., Dhanak, D., Jackson, J. R., Huang, P. S., Lee, Y., Sakowicz, R. & Copeland, R. A. (2004). Biochemistry, 43, 15258–15266. Web of Science CrossRef PubMed CAS Google Scholar
McKinstry, D. W. & Reading, E. H. (1944). J. Franklin. Inst. 237, 422–427. CAS Google Scholar
Neidle, S. & Thurston, D. E. (2005). Nat. Rev. Cancer, 5, 285–296. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Waring, M. J. (2006). Sequence-specific DNA binding agents. Cambridge: RSC Publishing. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted. Google Scholar
Zefirov, Yu. V. & Zorky, P. M. (1989). Russ. Chem. Rev. 58, 421–440. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrimidine-containing compounds exhibit a wide spectrum of biological activity (Goldmann & Stoltefuss, 1991). For example, dihydropyrimidines derivatives (DHPMs) may be applied as antimicrobial (McKinstry & Reading, 1944), anti-inflammatory (Kappe, 2000), anticarcenogenic drugs (Luo et al., 2004). A three-component condensation of urea derivatives with aromatic aldehydes and β-ketoesters, known as Biginelli reaction allows the synthesis of the DHPM unit with a widely modified and variable substitution pattern. It was proposed that the combination of the biologically active DHPM subunit with a DNA intercalator (Waring, 2006; Hannon, 2007; Ihmels & Otto, 2005) may lead to a new class of DNA-targeting drugs (Neidle & Thurston, 2005; Braña et al., 2001). Thus, a classical DNA, namely quinoline (Denny, 2003; Kharatishvili et al., 1997; Aislabie et al., 1990), was employed as quinoline-4-carbaldehyde in the Biginelli reaction according to traditional reaction conditions in ethanol employing hydrochloric acid as catalyst (Biginelli, 1893) leading to the title compound (Fig. 1).
Tetrahydropyrimidone ring adopts a distorted boat conformation with the C1, C2, C3 and N1 atoms almost coplanar (dihedral angle of 1.47 (18)°), while the C4 and N2 atoms deviated from this plane by -0.342 (2) Å and -0.481 (2) Å, respectively. This non-planariry is probably additionally supported by steric repulsion between methyl groups at the C3 and N1 atoms (short intramolecular contacts C17···H18a 2.55 Å and C18···C17a 2.57 Å while van der Waals radii sum is 2.87 Å, Zefirov & Zorky, 1989). Quinoline substituent has axial orientation (the C4—N2—C1—C5 torsion angle of -95.03 (14)°) and rotated almost coplanar to the C1—C2 bond (dihedral angle of -13.55 (16)°) despite short intramolecular contact H6···C2 2.48 Å (van der Waals radii sum is 2.87 Å, Zefirov & Zorky, 1989). Ester substituent at the C2 atom slightly rotated with respect to C1/C2/C3/N1 fragment (the C1—C2—C14—O1 torsion angle of -24.96 (18)°) supporting formation of attractive intramolecular contact O1···H1 2.44 Å (van der Waals radii sum of 2.46 Å). The ester substituent rotation is accompanied by formation of short intramolecular C17—H17c···O2 hydrogen bond.
The crystal packing (Fig. 2) is stabilized by intramolecular C—H···O and intermolecular N—H···O hydrogen bonds between adjacent amide fragments of pyrimidine ring, with a N2—H2···O3i (Table 1). The molecular packing (Fig. 2) is further stabilized by an intermolecular C—H···π interaction between the methyl H atom of the ethyl group and the pyridine ring of a neighbouring quinoline system, with a C16—H16C···Cg1ii.
(Table 1; Cg1 is the centroid of the C5/C6/C7/N3/C8/C13 pyridine ring).