metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(4-carb­­oxy-2-propyl-1H-imidazole-5-carboxyl­ato-κ2N3,O4)zinc(II) N,N-di­methyl­formamide disolvate

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: haochengjun2008@163.com

(Received 5 May 2010; accepted 10 June 2010; online 16 June 2010)

In the crystal structure of the title compound, [Zn(C8H9N2O4)2(H2O)2]·2C3H7NO, the ZnII atom is coordinated by two N,O-bidentate 2-propyl-1H-imidazole-4,5-dicarboxyl­ate anions and two water mol­ecules in a distorted octa­hedral environment. The asymmetric unit consists of one ZnII atom located on a center of inversion as well as one anion, one water mol­ecule and one additional dimethyl­formamide mol­ecule that occupy general positions. Between the carboxyl and the carboxyl­ate group an intra­molecular hydrogen bond is found in which the hydroxy H atom is disordered. Disorder is also found for the H atoms of one of the three methyl groups. In the crystal structure, additional inter­molecular N—H⋯O and O—H⋯O hydrogen bonding is found.

Related literature

For imidazole-4,5-dicarb­oxy­lic complexes, see: Maji et al. (2005[Maji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). Chem. Commun. pp. 2436-2438]); Yang & Zhang (2006[Yang, R. Q. & Zhang, X. M. (2006). Inorg. Chem. 45, 4801-4810.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H9N2O4)2(H2O)2]·2C3H7NO

  • Mr = 641.94

  • Triclinic, [P \overline 1]

  • a = 7.3619 (9) Å

  • b = 9.3194 (13) Å

  • c = 11.2301 (15) Å

  • α = 76.281 (1)°

  • β = 87.621 (2)°

  • γ = 68.888 (1)°

  • V = 697.44 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 298 K

  • 0.43 × 0.28 × 0.25 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.685, Tmax = 0.797

  • 3640 measured reflections

  • 2425 independent reflections

  • 2205 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.06

  • 2425 reflections

  • 179 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H2O6⋯O4i 0.82 2.16 2.9594 (14) 167
O6—H1O6⋯O4ii 0.82 1.98 2.796 175
O3—H1O3⋯O2 0.82 1.67 2.478 169
O2—H1O2⋯O3 0.82 1.66 2.478 177
N2—H1N1⋯O5iii 0.86 1.84 2.6789 (17) 166
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x, y+1, z; (iii) x+1, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole-4,5-dicarboxylic acid (H3Imda) can be deprotonated to generate three types of anions, namely Imda3-, HImda2- and H2Imda-and react with metal ions to form fascinating structures with different structures and useful properties (Maji et al., 2005; Yang & Zhang, 2006). We have therefore reacted the 2-propyl-1H -imidazole-4,5-dicarboxylic acid with Zn(NO3)2 under hydrothermal conditions to obtain a new ZnII complex and its structure is reported here. As illustrated in figure 1, the title complex molecule is a discrete complex, consisting of one ZnII ion, two mono-deprotonated 2-Propyl-1H-imidazole-4,5-dicarboxy anions and two water molecules. The Zn II atom resides on a crystallographic inversion centre and is trans-coordinated by two N,O-bidentate 2-Propyl-1H-imidazole-4,5-dicarboxylate anions [Zn—O = 2.2052 (14) Å and Zn—N = 2.0643 (15) Å] and two water molecules [Zn—O = 2.1612 (15) Å], within a slightly distorted octahedral environment, with adjacent cis angles of [78.59 (6) °-101.41 (6) °]. The carboxyl and carboxylate group are via an intramolecular hydrogen bond in which the H atom is disordered. (Table 1). The crystal structure contain additional dimethylfromamide molecules that are linked to the complexes via N—H···O hydrogen bonding (Fig. 2). The complexes are additionally connected by intermolecular O—H···O hydrogen bonding between the carboxyl O atoms and the water H atoms (Table 1 and Fig. 2).

Related literature top

For the excellent qualities of imidazole-4,5-dicarboxylic complexes, see: Maji et al. (2005); Yang & Zhang (2006).

Experimental top

A mixture of Zn(NO3)2 (0.2 mmol, 0.03 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid(0.5 mmol, 0.99 g) and 10 ml of C3H7NO was loaded in a 25 ml Telflon-lined stainless steel vessel and heated at 373k for 3 days. White crystals were obtained when the sample was cooled to room temperature slowly.

Refinement top

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H =0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The O-H H atoms were located in difference map, their bond lengths set to ideal values and finally they were refined using a riding model with O—H = 0.85 Å. The H atom of the carboxyl group is disordered and was refined using a split model with sof of 0.6 and 0.4. The H atoms of one of the three methyl groups are also disordered and were refined using a split model with two orientations each rotated by 60° and sof of 0.6 and 0.4.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids (H atoms are represented by arbitrary spheres). Disordered H atoms are shown with full and open bonds. Symmetry codes: (i) 1-x, 1-y, 1-z.
[Figure 2] Fig. 2. View of the three-dimensional network constructed by O—H···O and N—H···O hydrogen bonding interactions (the disordering is not shown for clarity and h<drogen bonding is shown as dashed lines)
Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- κ2N3,O4)zinc(II) N,N-dimethylformamide disolvate top
Crystal data top
[Zn(C8H9N2O4)2(H2O)2]·2C3H7NOZ = 1
Mr = 641.94F(000) = 336
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3619 (9) ÅCell parameters from 2051 reflections
b = 9.3194 (13) Åθ = 2.5–23.9°
c = 11.2301 (15) ŵ = 0.95 mm1
α = 76.281 (1)°T = 298 K
β = 87.621 (2)°Block, colorless
γ = 68.888 (1)°0.43 × 0.28 × 0.25 mm
V = 697.44 (16) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2425 independent reflections
Radiation source: fine-focus sealed tube2205 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 88
Tmin = 0.685, Tmax = 0.797k = 1011
3640 measured reflectionsl = 1310
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.2536P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2425 reflectionsΔρmax = 0.26 e Å3
179 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.067 (4)
Crystal data top
[Zn(C8H9N2O4)2(H2O)2]·2C3H7NOγ = 68.888 (1)°
Mr = 641.94V = 697.44 (16) Å3
Triclinic, P1Z = 1
a = 7.3619 (9) ÅMo Kα radiation
b = 9.3194 (13) ŵ = 0.95 mm1
c = 11.2301 (15) ÅT = 298 K
α = 76.281 (1)°0.43 × 0.28 × 0.25 mm
β = 87.621 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2425 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2205 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.797Rint = 0.015
3640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
2425 reflectionsΔρmin = 0.33 e Å3
179 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.50000.50000.02921 (14)
N10.6351 (2)0.25671 (17)0.54820 (14)0.0248 (3)
N20.8023 (2)0.00172 (18)0.60587 (15)0.0287 (4)
H1N10.87400.08850.65060.034*
N30.1215 (3)0.4911 (2)0.86419 (18)0.0419 (4)
O10.4380 (2)0.43510 (15)0.33379 (12)0.0342 (3)
O20.49486 (10)0.22669 (8)0.25454 (6)0.0384 (4)
H1O20.55910.13150.27270.058*0.60
O30.68632 (10)0.06116 (8)0.31714 (6)0.0423 (4)
H1O30.61320.03110.29200.063*0.40
O40.86310 (10)0.23869 (8)0.47855 (6)0.0412 (4)
O50.03879 (10)0.74901 (8)0.76828 (6)0.0575 (5)
O60.77394 (10)0.51222 (8)0.43114 (6)0.0381 (4)
H1O60.79380.58870.44350.057*
H2O60.86310.43100.46470.057*
C10.5133 (3)0.2910 (2)0.34026 (17)0.0275 (4)
C20.6268 (3)0.1875 (2)0.45418 (17)0.0240 (4)
C30.7305 (3)0.0277 (2)0.48902 (17)0.0251 (4)
C40.7647 (3)0.1017 (2)0.42490 (19)0.0306 (4)
C50.7424 (3)0.1403 (2)0.63940 (17)0.0272 (4)
C60.7850 (3)0.1559 (2)0.76285 (18)0.0357 (5)
H6C0.74350.26750.76200.043*
H6D0.92470.10930.78070.043*
C70.6844 (4)0.0768 (3)0.8641 (2)0.0553 (7)
H7A0.54560.11870.84320.066*
H7B0.73200.03580.86790.066*
C80.7156 (4)0.0996 (3)0.9888 (2)0.0571 (7)
H8B0.70540.20710.98150.086*0.60
H8C0.84290.02891.02260.086*0.60
H8A0.61860.07751.04200.086*0.60
H8E0.83560.11770.99210.086*0.40
H8D0.72200.00651.05040.086*0.40
H8F0.60940.18931.00370.086*0.40
C90.0112 (3)0.6238 (3)0.7883 (2)0.0442 (6)
H90.09470.62180.74730.053*
C100.2943 (4)0.4853 (3)0.9244 (3)0.0616 (7)
H10A0.40700.43500.88250.092*
H10B0.30510.42611.00800.092*
H10C0.28580.59100.92260.092*
C110.0897 (6)0.3442 (3)0.8741 (3)0.0793 (10)
H11A0.03200.36590.83250.119*
H11B0.08630.29470.95900.119*
H11C0.19390.27470.83720.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0353 (2)0.01589 (19)0.0328 (2)0.00545 (13)0.00206 (13)0.00454 (13)
N10.0288 (8)0.0178 (8)0.0263 (8)0.0071 (6)0.0014 (6)0.0037 (6)
N20.0310 (8)0.0161 (8)0.0325 (9)0.0048 (7)0.0042 (7)0.0012 (7)
N30.0475 (11)0.0272 (10)0.0455 (11)0.0102 (8)0.0006 (9)0.0037 (8)
O10.0437 (8)0.0194 (7)0.0312 (8)0.0033 (6)0.0080 (6)0.0020 (6)
O20.0494 (9)0.0298 (8)0.0317 (8)0.0069 (7)0.0092 (6)0.0090 (6)
O30.0549 (9)0.0284 (8)0.0421 (9)0.0081 (7)0.0025 (7)0.0156 (7)
O40.0415 (8)0.0192 (7)0.0586 (10)0.0040 (6)0.0032 (7)0.0113 (7)
O50.0633 (11)0.0276 (9)0.0651 (12)0.0046 (8)0.0201 (9)0.0046 (8)
O60.0358 (8)0.0230 (7)0.0548 (10)0.0097 (6)0.0027 (7)0.0097 (7)
C10.0283 (10)0.0239 (10)0.0281 (10)0.0075 (8)0.0003 (8)0.0050 (8)
C20.0248 (9)0.0205 (9)0.0264 (10)0.0081 (7)0.0016 (7)0.0051 (7)
C30.0245 (9)0.0199 (9)0.0300 (10)0.0077 (7)0.0017 (7)0.0045 (8)
C40.0285 (10)0.0229 (10)0.0410 (12)0.0089 (8)0.0050 (9)0.0100 (9)
C50.0291 (10)0.0199 (9)0.0296 (10)0.0079 (8)0.0023 (8)0.0011 (7)
C60.0445 (12)0.0277 (11)0.0320 (11)0.0117 (9)0.0089 (9)0.0020 (8)
C70.0699 (17)0.0634 (17)0.0420 (14)0.0321 (14)0.0123 (12)0.0188 (12)
C80.0653 (17)0.0591 (17)0.0402 (14)0.0146 (14)0.0039 (12)0.0123 (12)
C90.0379 (12)0.0437 (14)0.0437 (13)0.0057 (10)0.0053 (10)0.0099 (11)
C100.0469 (14)0.0528 (16)0.0639 (18)0.0051 (12)0.0138 (13)0.0076 (13)
C110.113 (3)0.0437 (17)0.089 (2)0.0384 (18)0.014 (2)0.0156 (16)
Geometric parameters (Å, º) top
Zn1—N12.0643 (15)C1—C21.479 (3)
Zn1—N1i2.0643 (15)C2—C31.372 (3)
Zn1—O6i2.1616C3—C41.488 (3)
Zn1—O62.1616C5—C61.485 (3)
Zn1—O12.2053 (14)C6—C71.520 (3)
Zn1—O1i2.2053 (14)C6—H6C0.9700
N1—C51.331 (2)C6—H6D0.9700
N1—C21.375 (2)C7—C81.505 (3)
N2—C51.346 (2)C7—H7A0.9700
N2—C31.369 (2)C7—H7B0.9700
N2—H1N10.8600C8—H8B0.9600
N3—C91.322 (3)C8—H8C0.9600
N3—C101.443 (3)C8—H8A0.9600
N3—C111.448 (3)C8—H8E0.9602
O1—C11.240 (2)C8—H8D0.9601
O2—C11.284 (2)C8—H8F0.9602
O2—H1O20.8200C9—H90.9300
O3—C41.274 (2)C10—H10A0.9600
O3—H1O30.8200C10—H10B0.9600
O4—C41.234 (2)C10—H10C0.9600
O5—C91.223 (3)C11—H11A0.9600
O6—H1O60.8201C11—H11B0.9600
O6—H2O60.8200C11—H11C0.9600
N1—Zn1—N1i180.0O3—C4—C3116.34 (16)
N1—Zn1—O6i92.14 (5)N1—C5—N2110.03 (17)
N1i—Zn1—O6i87.86 (5)N1—C5—C6126.12 (17)
N1—Zn1—O687.86 (5)N2—C5—C6123.80 (17)
N1i—Zn1—O692.14 (5)C5—C6—C7113.04 (18)
O6i—Zn1—O6180.0C5—C6—H6C109.0
N1—Zn1—O178.58 (5)C7—C6—H6C109.0
N1i—Zn1—O1101.43 (5)C5—C6—H6D109.0
O6i—Zn1—O188.98 (4)C7—C6—H6D109.0
O6—Zn1—O191.02 (4)H6C—C6—H6D107.8
N1—Zn1—O1i101.43 (5)C8—C7—C6113.9 (2)
N1i—Zn1—O1i78.57 (5)C8—C7—H7A108.8
O6i—Zn1—O1i91.02 (4)C6—C7—H7A108.8
O6—Zn1—O1i88.98 (4)C8—C7—H7B108.8
O1—Zn1—O1i180.0C6—C7—H7B108.8
C5—N1—C2106.21 (15)H7A—C7—H7B107.7
C5—N1—Zn1141.02 (13)C7—C8—H8B109.5
C2—N1—Zn1112.56 (12)C7—C8—H8C109.5
C5—N2—C3108.91 (16)C7—C8—H8A109.5
C5—N2—H1N1125.5C7—C8—H8E109.5
C3—N2—H1N1125.5C7—C8—H8D109.5
C9—N3—C10119.9 (2)H8E—C8—H8D109.5
C9—N3—C11121.1 (2)C7—C8—H8F109.5
C10—N3—C11118.4 (2)H8E—C8—H8F109.5
C1—O1—Zn1112.88 (12)H8D—C8—H8F109.5
C1—O2—H1O2110.3O5—C9—N3124.6 (2)
C4—O3—H1O3117.8O5—C9—H9117.7
Zn1—O6—H1O6112.3N3—C9—H9117.7
Zn1—O6—H2O6109.2N3—C10—H10A109.5
H1O6—O6—H2O6108.9N3—C10—H10B109.5
O1—C1—O2123.54 (16)H10A—C10—H10B109.5
O1—C1—C2118.08 (17)N3—C10—H10C109.5
O2—C1—C2118.37 (16)H10A—C10—H10C109.5
C3—C2—N1109.67 (16)H10B—C10—H10C109.5
C3—C2—C1132.62 (17)N3—C11—H11A109.5
N1—C2—C1117.71 (16)N3—C11—H11B109.5
N2—C3—C2105.17 (16)H11A—C11—H11B109.5
N2—C3—C4122.91 (17)N3—C11—H11C109.5
C2—C3—C4131.90 (18)H11A—C11—H11C109.5
O4—C4—O3124.73 (17)H11B—C11—H11C109.5
O4—C4—C3118.93 (18)
N1i—Zn1—N1—C523 (100)O1—C1—C2—N12.6 (3)
O6i—Zn1—N1—C594.0 (2)O2—C1—C2—N1175.99 (15)
O6—Zn1—N1—C586.0 (2)C5—N2—C3—C20.5 (2)
O1—Zn1—N1—C5177.5 (2)C5—N2—C3—C4178.27 (17)
O1i—Zn1—N1—C52.5 (2)N1—C2—C3—N20.2 (2)
N1i—Zn1—N1—C2151 (100)C1—C2—C3—N2179.58 (19)
O6i—Zn1—N1—C292.28 (12)N1—C2—C3—C4178.35 (18)
O6—Zn1—N1—C287.72 (12)C1—C2—C3—C41.0 (4)
O1—Zn1—N1—C23.76 (12)N2—C3—C4—O40.5 (3)
O1i—Zn1—N1—C2176.24 (12)C2—C3—C4—O4178.83 (17)
N1—Zn1—O1—C12.53 (13)N2—C3—C4—O3178.75 (15)
N1i—Zn1—O1—C1177.47 (13)C2—C3—C4—O30.4 (3)
O6i—Zn1—O1—C194.92 (13)C2—N1—C5—N20.4 (2)
O6—Zn1—O1—C185.08 (13)Zn1—N1—C5—N2173.60 (14)
O1i—Zn1—O1—C1168 (100)C2—N1—C5—C6177.05 (18)
Zn1—O1—C1—O2179.33 (13)Zn1—N1—C5—C68.9 (3)
Zn1—O1—C1—C20.8 (2)C3—N2—C5—N10.6 (2)
C5—N1—C2—C30.1 (2)C3—N2—C5—C6176.97 (17)
Zn1—N1—C2—C3175.82 (12)N1—C5—C6—C7110.5 (2)
C5—N1—C2—C1179.37 (16)N2—C5—C6—C766.6 (3)
Zn1—N1—C2—C14.7 (2)C5—C6—C7—C8176.5 (2)
O1—C1—C2—C3178.04 (19)C10—N3—C9—O53.7 (4)
O2—C1—C2—C33.3 (3)C11—N3—C9—O5174.1 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H2O6···O4ii0.822.162.9594 (14)167
O6—H1O6···O4iii0.821.982.796175
O3—H1O3···O20.821.672.478169
O2—H1O2···O30.821.662.478177
N2—H1N1···O5iv0.861.842.6789 (17)166
Symmetry codes: (ii) x+2, y, z+1; (iii) x, y+1, z; (iv) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C8H9N2O4)2(H2O)2]·2C3H7NO
Mr641.94
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.3619 (9), 9.3194 (13), 11.2301 (15)
α, β, γ (°)76.281 (1), 87.621 (2), 68.888 (1)
V3)697.44 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.43 × 0.28 × 0.25
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.685, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
3640, 2425, 2205
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.06
No. of reflections2425
No. of parameters179
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.33

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H2O6···O4i0.822.162.9594 (14)166.8
O6—H1O6···O4ii0.821.982.796175.3
O3—H1O3···O20.821.672.478169.1
O2—H1O2···O30.821.662.478177.0
N2—H1N1···O5iii0.861.842.6789 (17)166.0
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z; (iii) x+1, y1, z.
 

Acknowledgements

The authors acknowledge Pingdingshan University for support of this work.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMaji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). Chem. Commun. pp. 2436–2438  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, R. Q. & Zhang, X. M. (2006). Inorg. Chem. 45, 4801–4810.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds