metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­(μ1,1-azido)(μ-3H-1,2,3-tri­azolo[4,5-b]pyridin-3-olato)cobalt(II)]

aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com

(Received 30 May 2010; accepted 19 June 2010; online 26 June 2010)

In the title compound, [Co(C5H3N4O)(N3)(H2O)]n, the cobalt ion is coordinated by three N atoms of two organic ligands, two N atoms of two azide anions and one water mol­ecule in a distorted octa­hedral geometry. The metal atoms are connected via the ligands into layers, which are further connected by O—H⋯N and O—H⋯O hydrogen bonding.

Related literature

For the coordination modes of azide anions, see: Zeng et al. (2009[Zeng, Y.-F., Hu, X., Liu, F.-C. & Bu, X.-H. (2009). Chem. Soc. Rev. 38, 469-480.]). For the preparation and chacterization of metal–azide complexes with different co-ligands, see: Wang et al. (2008[Wang, X.-Y., Wang, Z.-M. & Gao, S. (2008). Chem. Commun. 37 281-294.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5H3N4O)(N3)(H2O)]

  • Mr = 254.09

  • Monoclinic, P 21 /c

  • a = 7.0891 (14) Å

  • b = 10.122 (2) Å

  • c = 12.685 (4) Å

  • β = 113.08 (2)°

  • V = 837.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.462, Tmax = 1

  • 6902 measured reflections

  • 1469 independent reflections

  • 1352 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.09

  • 1469 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.50 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯N7i 0.74 (7) 2.15 (7) 2.894 (6) 178 (7)
O1W—H1WA⋯O1ii 0.84 (8) 1.87 (8) 2.661 (5) 156 (8)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z-{\script{3\over 2}}]; (ii) -x, -y-1, -z-1.

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). Process-Auto. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Azide anion has drawn much attentions because they can coordinate to metal ions in diverse coordination modes (Zeng, et al., 2009). Therefore, several metal azide complexes with different co-ligand has been prepared and characterized (Wang, et al., 2008). As a part on a project of new metal azide coordination polymers the structure of the title compound was determined.

In the crystal structure of the title compound the Co ions are coordinated by two N atoms of two symmetry related azide anion, three N atoms of two symmetry related organic ligands and one water molecule within slightly distorted octahedra (Fig. 1). The Co ions are connected via two end-on bridging thiocyanato anions into chains, that are further be connected into layers by the organic ligands. These layers are located in the b-c-plane and are linked via N-H···O and N-H···N hydrogen bonding to adjacent water molecules and azide anions (Fig. 2).

Related literature top

For the coordination modes of azide anions, see: Zeng et al. (2009). For the preparation and chacterzation of metal–azide complexes with different co-ligands, see: Wang et al. (2008).

Experimental top

A mixture of Co(II)nitrate (1.5mmol), 3H-[1,2,3]triazolo[4,5-b]pyridin-3-ol(0.75 mmol), and sodium azide (2mmol), in 10 ml MeOH solvent was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature. Yield 20% based on metal salt.

Refinement top

Hydrogen atoms of water molecule were added by difference Fourier maps and refined directly. Other hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the complex with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: i = x,-y-1/2,z-1/2, ii = -x+1,-y-1,-z-1 and iii = x,-y-1/2,z+1/2
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the c axis.
Poly[aqua(µ1,1-azido)(µ-3H-1,2,3-triazolo[4,5- b]pyridin-3-olato)cobalt(II)] top
Crystal data top
[Co(C5H3N4O)(N3)(H2O)]F(000) = 508
Mr = 254.09Dx = 2.015 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0891 (14) ÅCell parameters from 7903 reflections
b = 10.122 (2) Åθ = 3.1–27.7°
c = 12.685 (4) ŵ = 2.04 mm1
β = 113.08 (2)°T = 293 K
V = 837.4 (4) Å3Block, red
Z = 40.2 × 0.18 × 0.18 mm
Data collection top
Rigaku SCXmini
diffractometer
1469 independent reflections
Radiation source: fine-focus sealed tube1352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.462, Tmax = 1k = 1212
6902 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0466P)2 + 3.7642P]
where P = (Fo2 + 2Fc2)/3
1469 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Co(C5H3N4O)(N3)(H2O)]V = 837.4 (4) Å3
Mr = 254.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0891 (14) ŵ = 2.04 mm1
b = 10.122 (2) ÅT = 293 K
c = 12.685 (4) Å0.2 × 0.18 × 0.18 mm
β = 113.08 (2)°
Data collection top
Rigaku SCXmini
diffractometer
1469 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1352 reflections with I > 2σ(I)
Tmin = 0.462, Tmax = 1Rint = 0.040
6902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.50 e Å3
1469 reflectionsΔρmin = 0.43 e Å3
144 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.30993 (8)0.38921 (6)0.53843 (5)0.0158 (2)
O10.2961 (5)0.4313 (3)0.3763 (3)0.0234 (7)
N10.3036 (6)0.1727 (4)0.1987 (3)0.0212 (8)
N20.3051 (6)0.3027 (4)0.2197 (3)0.0204 (8)
N30.2971 (5)0.3160 (4)0.3251 (3)0.0179 (8)
N40.2849 (6)0.1814 (4)0.4803 (3)0.0211 (8)
N50.3650 (6)0.5988 (4)0.5436 (3)0.0213 (8)
N60.2624 (6)0.6837 (4)0.6055 (3)0.0230 (9)
N70.1639 (8)0.7656 (5)0.6637 (4)0.0420 (12)
C10.2719 (7)0.0579 (5)0.5091 (4)0.0261 (11)
H1A0.26690.03710.58160.031*
C20.2650 (9)0.0474 (5)0.4373 (4)0.0317 (11)
H2A0.25290.13370.46440.038*
C30.2756 (8)0.0249 (5)0.3296 (4)0.0261 (10)
H3A0.27240.09360.28170.031*
C40.2914 (7)0.1065 (5)0.2948 (4)0.0225 (10)
C50.2908 (6)0.1985 (4)0.3742 (3)0.0172 (9)
O1W0.0066 (6)0.3972 (5)0.6162 (4)0.0402 (10)
H1WB0.045 (10)0.364 (7)0.673 (6)0.05 (2)*
H1WA0.078 (12)0.466 (8)0.626 (7)0.07 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0175 (3)0.0180 (3)0.0126 (3)0.0012 (2)0.0067 (2)0.0002 (2)
O10.0313 (18)0.0192 (16)0.0224 (16)0.0006 (14)0.0135 (14)0.0048 (13)
N10.0208 (19)0.027 (2)0.0158 (18)0.0013 (16)0.0071 (15)0.0004 (16)
N20.029 (2)0.0180 (19)0.0177 (18)0.0012 (16)0.0130 (16)0.0002 (15)
N30.0213 (19)0.0178 (19)0.0165 (18)0.0005 (15)0.0094 (15)0.0018 (15)
N40.0217 (19)0.029 (2)0.0139 (18)0.0027 (16)0.0087 (15)0.0016 (16)
N50.0205 (19)0.019 (2)0.023 (2)0.0030 (16)0.0070 (16)0.0041 (16)
N60.026 (2)0.023 (2)0.0179 (19)0.0030 (18)0.0063 (17)0.0031 (18)
N70.050 (3)0.035 (3)0.031 (2)0.018 (2)0.004 (2)0.006 (2)
C10.032 (3)0.033 (3)0.020 (2)0.006 (2)0.017 (2)0.004 (2)
C20.049 (3)0.023 (3)0.026 (3)0.001 (2)0.017 (2)0.004 (2)
C30.037 (3)0.022 (2)0.022 (2)0.000 (2)0.014 (2)0.0031 (19)
C40.022 (2)0.027 (3)0.019 (2)0.0011 (19)0.0094 (18)0.0003 (19)
C50.018 (2)0.020 (2)0.014 (2)0.0006 (17)0.0074 (17)0.0007 (17)
O1W0.0229 (19)0.051 (3)0.037 (2)0.0086 (18)0.0013 (17)0.021 (2)
Geometric parameters (Å, º) top
Co1—O1W2.069 (4)N4—C51.341 (5)
Co1—N1i2.111 (4)N5—N61.198 (5)
Co1—N5ii2.128 (4)N5—Co1ii2.128 (4)
Co1—O12.140 (3)N6—N71.147 (6)
Co1—N52.163 (4)C1—C21.416 (7)
Co1—N42.259 (4)C1—H1A0.9300
O1—N31.334 (5)C2—C31.357 (7)
N1—N21.343 (5)C2—H2A0.9300
N1—C41.365 (6)C3—C41.392 (7)
N1—Co1iii2.111 (4)C3—H3A0.9300
N2—N31.323 (5)C4—C51.371 (6)
N3—C51.335 (6)O1W—H1WB0.74 (7)
N4—C11.295 (6)O1W—H1WA0.84 (8)
O1W—Co1—N1i86.72 (16)C1—N4—Co1144.3 (3)
O1W—Co1—N5ii174.45 (17)C5—N4—Co1103.4 (3)
N1i—Co1—N5ii95.61 (15)N6—N5—Co1ii122.8 (3)
O1W—Co1—O190.03 (15)N6—N5—Co1130.7 (3)
N1i—Co1—O1173.20 (13)Co1ii—N5—Co1102.40 (15)
N5ii—Co1—O188.16 (14)N7—N6—N5179.2 (5)
O1W—Co1—N597.02 (17)N4—C1—C2124.2 (4)
N1i—Co1—N5101.43 (15)N4—C1—H1A117.9
N5ii—Co1—N577.60 (15)C2—C1—H1A117.9
O1—Co1—N584.88 (13)C3—C2—C1121.3 (5)
O1W—Co1—N489.00 (17)C3—C2—H2A119.4
N1i—Co1—N493.61 (14)C1—C2—H2A119.4
N5ii—Co1—N495.87 (14)C2—C3—C4116.4 (4)
O1—Co1—N480.35 (12)C2—C3—H3A121.8
N5—Co1—N4164.06 (14)C4—C3—H3A121.8
N3—O1—Co1107.4 (2)N1—C4—C5107.7 (4)
N2—N1—C4107.9 (4)N1—C4—C3136.2 (4)
N2—N1—Co1iii118.9 (3)C5—C4—C3116.1 (4)
C4—N1—Co1iii133.2 (3)N3—C5—N4124.4 (4)
N3—N2—N1107.4 (3)N3—C5—C4105.8 (4)
N2—N3—O1124.8 (3)N4—C5—C4129.8 (4)
N2—N3—C5111.2 (3)Co1—O1W—H1WB111 (5)
O1—N3—C5124.0 (3)Co1—O1W—H1WA125 (5)
C1—N4—C5112.2 (4)H1WB—O1W—H1WA105 (7)
O1W—Co1—O1—N393.8 (3)N5ii—Co1—N5—Co1ii0.0
N1i—Co1—O1—N332.4 (12)O1—Co1—N5—Co1ii89.23 (15)
N5ii—Co1—O1—N391.4 (3)N4—Co1—N5—Co1ii67.1 (5)
N5—Co1—O1—N3169.1 (3)Co1ii—N5—N6—N791 (38)
N4—Co1—O1—N34.9 (2)Co1—N5—N6—N7116 (38)
C4—N1—N2—N30.9 (5)C5—N4—C1—C20.0 (7)
Co1iii—N1—N2—N3179.0 (3)Co1—N4—C1—C2177.8 (4)
N1—N2—N3—O1179.9 (4)N4—C1—C2—C31.3 (8)
N1—N2—N3—C50.1 (5)C1—C2—C3—C40.6 (8)
Co1—O1—N3—N2174.8 (3)N2—N1—C4—C51.5 (5)
Co1—O1—N3—C54.9 (5)Co1iii—N1—C4—C5179.3 (3)
O1W—Co1—N4—C187.4 (6)N2—N1—C4—C3176.7 (5)
N1i—Co1—N4—C10.8 (6)Co1iii—N1—C4—C31.1 (8)
N5ii—Co1—N4—C195.3 (6)C2—C3—C4—N1179.2 (5)
O1—Co1—N4—C1177.6 (6)C2—C3—C4—C51.1 (7)
N5—Co1—N4—C1160.0 (5)N2—N3—C5—N4179.1 (4)
O1W—Co1—N4—C594.7 (3)O1—N3—C5—N40.7 (6)
N1i—Co1—N4—C5178.7 (3)N2—N3—C5—C41.1 (5)
N5ii—Co1—N4—C582.7 (3)O1—N3—C5—C4179.1 (4)
O1—Co1—N4—C54.5 (3)C1—N4—C5—N3177.6 (4)
N5—Co1—N4—C517.9 (6)Co1—N4—C5—N33.7 (5)
O1W—Co1—N5—N624.1 (4)C1—N4—C5—C42.2 (7)
N1i—Co1—N5—N664.0 (4)Co1—N4—C5—C4176.5 (4)
N5ii—Co1—N5—N6157.3 (5)N1—C4—C5—N31.6 (5)
O1—Co1—N5—N6113.5 (4)C3—C4—C5—N3177.0 (4)
N4—Co1—N5—N6135.6 (5)N1—C4—C5—N4178.6 (4)
O1W—Co1—N5—Co1ii178.63 (17)C3—C4—C5—N42.8 (7)
N1i—Co1—N5—Co1ii93.31 (16)
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y1, z1; (iii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···N7iv0.74 (7)2.15 (7)2.894 (6)178 (7)
O1W—H1WA···O1v0.84 (8)1.87 (8)2.661 (5)156 (8)
Symmetry codes: (iv) x, y+1/2, z3/2; (v) x, y1, z1.

Experimental details

Crystal data
Chemical formula[Co(C5H3N4O)(N3)(H2O)]
Mr254.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.0891 (14), 10.122 (2), 12.685 (4)
β (°) 113.08 (2)
V3)837.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.2 × 0.18 × 0.18
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.462, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
6902, 1469, 1352
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.09
No. of reflections1469
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.50, 0.43

Computer programs: SCXmini Benchtop Crystallography System Software (Rigaku, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···N7i0.74 (7)2.15 (7)2.894 (6)178 (7)
O1W—H1WA···O1ii0.84 (8)1.87 (8)2.661 (5)156 (8)
Symmetry codes: (i) x, y+1/2, z3/2; (ii) x, y1, z1.
 

Acknowledgements

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). Process-Auto. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-Y., Wang, Z.-M. & Gao, S. (2008). Chem. Commun. 37 281–294.  Web of Science CrossRef Google Scholar
First citationZeng, Y.-F., Hu, X., Liu, F.-C. & Bu, X.-H. (2009). Chem. Soc. Rev. 38, 469–480.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds