organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzimidazolium 3,5-dicarb­­oxy­benzoate trihydrate

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: luckyms@126.com

(Received 7 June 2010; accepted 16 June 2010; online 23 June 2010)

Cocrystallization of benzimidazole with benzene 1,3,5-tricarb­oxy­lic acid in slightly basic medium afforded the title compound, C7H7N2+·C9H5O6·3H2O, in which one of the imidazole N atom is protonated and one carb­oxy­lic group of aromatic acid is deprotonated. In the crystal structure, inter­molecular N—H⋯O hydrogen-bonding connects the two organic components into dimers, which are further linked into a three-dimensional network by O—H⋯O and N—H⋯O inter­actions between the water mol­ecules and the dimers.

Related literature

For mol­ecular self-assembly by non-covalent inter­actions and its potential applications, see: Remenar et al. (2003[Remenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmán, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc. 125, 8456-8457.]); Oxtoby et al. (2005[Oxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J. 11, 1-13.]); Zaworotko (2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]). For the benzimidazole-based supra­molecular aggregate formed by ππ stacking and hydrogen-bonding inter­actions, see Gao et al. (2004[Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, o1856-o1858.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N2+·C9H5O6·3H2O

  • Mr = 382.32

  • Triclinic, P 1

  • a = 3.8478 (2) Å

  • b = 10.2231 (6) Å

  • c = 11.2982 (7) Å

  • α = 85.522 (1)°

  • β = 80.707 (1)°

  • γ = 81.826 (1)°

  • V = 433.45 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.976

  • 2240 measured reflections

  • 1536 independent reflections

  • 1478 reflections with I > 2σ(I)

  • Rint = 0.008

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.04

  • 1536 reflections

  • 246 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O9i 0.82 1.73 2.539 (2) 169
O6—H6⋯O7ii 0.82 1.77 2.589 (2) 176
N1—H1⋯O8iii 0.86 1.97 2.812 (3) 167
N2—H2⋯O2iv 0.86 1.87 2.721 (3) 173
O7—H7A⋯O2 0.85 1.92 2.760 (3) 173
O7—H7B⋯O8 0.85 2.09 2.877 (3) 155
O8—H8A⋯O5v 0.85 1.99 2.797 (3) 159
O8—H8B⋯O3iii 0.85 1.92 2.730 (2) 160
O9—H9A⋯O1iv 0.85 1.81 2.654 (2) 173
O9—H9B⋯O1vi 0.85 1.86 2.685 (3) 163
Symmetry codes: (i) x+1, y, z; (ii) x-1, y+1, z; (iii) x-1, y, z; (iv) x-1, y, z-1; (v) x, y-1, z; (vi) x, y, z-1.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, molecular self-assembly by non-covalent interactions has attacted considerable interest in supramolecular chemistry and crystal engineering due to their possible potential applications as functional materials (Zaworotko, 2001), in molecular recognition (Oxtoby et al., 2005), and pharmaceutical chemistry (Remenar et al., 2003). Obviously, the conguated organic components with rich carboxylate or amino groups have became good blocks for the construction of self-assembly systems, since hydrogen-bonding and π··· π interactions are the main driven forces of the assembly process. In this context benzimidazole (bim) and its derivatives have been used as promising building blocks for the construction of supramolecular aggregates. As a continuation of this work bim and 1,3,5-benzenetricarboxylic acid (H3btc) were reacted in slightly basic medium and the product were identified by single crystal X-ray diffraction.

The asymmetric unit of the title compound comprises one Hbim+ cation, one monodeprotonated H2btc- anion and three water molecules all of the located in general positions (Fig. 1). The two carboxyl groups are located within the plane of the aromatic ring, whereas the deprotonated carboxylate group is slightly twisted out of the ring plane. The dihedral angle between the aromatic and the benzimidazole rings amount to 6.84 (5)o.

In the crystal structure, the Hbim+ cations and H2btc- anions are connected into dimers by N–H···O hydrogen-bonding between the N—H H atoms and the carboxylate group (Table 1). These dimers are further connected by O–H···O and N–H···O hydrogen bonding between the water molecules, the carboxyl and carboxylate groups as well as the N-H H atoms into a three-dimensional hydrogen bonded network (Figure 2 and Table 1). In this interactions the water molecules act as hydrogen bond donor and acceptor.

Related literature top

For molecular self-assembly by non-covalent interactions and its potential applications, see: Remenar et al. (2003); Oxtoby et al. (2005). Zaworotko (2001). For the benzimidazole-based supramolecular aggregate formed by ππ stacking and hydrogen-bonding interactions, see Gao et al. (2004).

Experimental top

A mixture containing H3btc (21.0 mg, 0.1 mmol), bim (11.8 mg, 0.1 mmol), and NaOH (4.0 mg, 0.1 mmol) was dissolved in a mixed methanol-H2O solution (v: v = 1:1, 10.0 ml). Then, the mixture was transferred into a Teflon-lined reactor (23.0 ml) and heated to 70 oC for 48 hrs. After the mixture was cooled to room temperature at a rate of 6 oC h-1, colorless block-shaped crystals suitable for X-ray diffraction were obtained directly. Yield: 56% based on bim. Anal.Calcd for C16H18N2O9,C,50.26; H, 4.75; N, 7.33%. Found: C, 50.32; H, 4.78; N,7.36%.

Refinement top

The C-H, N-H and hydroxy H atoms were located in difference maps, but were placed in calculated positions (O-H allowed to rotate but not to tip) and treated as riding, with C – H = 0.93, O – H = 0.82 and N – H = 0.86 Å. The water H atoms were located in difference map and were refined using restraints. All H were refined isotropic with [Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O)].

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a-axis. Hydrogen bonding is shown as dashed lines.
Benzimidazolium 3,5-dicarboxybenzoate trihydrate top
Crystal data top
C7H7N2+·C9H5O6·3H2OZ = 1
Mr = 382.32F(000) = 200
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: P1Mo Kα radiation, λ = 0.71073 Å
a = 3.8478 (2) ÅCell parameters from 1795 reflections
b = 10.2231 (6) Åθ = 2.8–27.9°
c = 11.2982 (7) ŵ = 0.12 mm1
α = 85.522 (1)°T = 296 K
β = 80.707 (1)°Block, colourless
γ = 81.826 (1)°0.24 × 0.22 × 0.20 mm
V = 433.45 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1536 independent reflections
Radiation source: fine-focus sealed tube1478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.008
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.971, Tmax = 0.976k = 125
2240 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.0236P]
where P = (Fo2 + 2Fc2)/3
1536 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.14 e Å3
3 restraintsΔρmin = 0.19 e Å3
Crystal data top
C7H7N2+·C9H5O6·3H2Oγ = 81.826 (1)°
Mr = 382.32V = 433.45 (4) Å3
Triclinic, P1Z = 1
a = 3.8478 (2) ÅMo Kα radiation
b = 10.2231 (6) ŵ = 0.12 mm1
c = 11.2982 (7) ÅT = 296 K
α = 85.522 (1)°0.24 × 0.22 × 0.20 mm
β = 80.707 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1536 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1478 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.976Rint = 0.008
2240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0283 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
1536 reflectionsΔρmin = 0.19 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8287 (5)0.63795 (18)1.20720 (14)0.0482 (4)
O20.9531 (6)0.44710 (18)1.11874 (15)0.0581 (5)
O31.2332 (6)0.50067 (17)0.65819 (16)0.0552 (5)
O40.9893 (5)0.68726 (18)0.57532 (15)0.0546 (5)
H41.10050.65610.51350.082*
O50.2872 (6)1.03786 (17)0.80326 (17)0.0596 (5)
O60.1819 (5)1.01258 (17)1.00192 (16)0.0544 (5)
H60.06621.08580.99460.082*
N10.0881 (6)0.2463 (2)0.52127 (19)0.0457 (5)
H10.16440.24700.59710.055*
N20.0014 (6)0.3109 (2)0.33346 (19)0.0458 (5)
H20.00770.35950.26810.055*
C10.1306 (6)0.1435 (2)0.4635 (2)0.0384 (5)
C20.1892 (6)0.1855 (2)0.3429 (2)0.0387 (5)
C30.3998 (7)0.1058 (3)0.2576 (2)0.0497 (6)
H30.44110.13360.17690.060*
C40.5439 (7)0.0170 (3)0.2996 (3)0.0587 (7)
H4A0.68630.07350.24550.070*
C50.4822 (8)0.0587 (3)0.4207 (3)0.0592 (8)
H50.58430.14240.44500.071*
C60.2766 (7)0.0196 (3)0.5047 (3)0.0507 (6)
H6A0.23640.00860.58540.061*
C70.1607 (7)0.3433 (2)0.4406 (2)0.0482 (6)
H70.30520.42270.45740.058*
C80.7899 (5)0.6418 (2)1.00125 (19)0.0329 (5)
C90.9324 (5)0.5896 (2)0.89162 (19)0.0325 (4)
H91.06280.50570.88950.039*
C100.8824 (6)0.6614 (2)0.78491 (19)0.0320 (4)
C110.6801 (5)0.7855 (2)0.78785 (19)0.0332 (4)
H110.64510.83360.71650.040*
C120.5300 (6)0.8377 (2)0.8973 (2)0.0339 (5)
C130.5874 (5)0.7666 (2)1.00353 (19)0.0336 (4)
H130.49070.80231.07680.040*
C140.8615 (6)0.5697 (2)1.11777 (19)0.0367 (5)
C151.0532 (6)0.6071 (2)0.66716 (18)0.0358 (5)
C160.3216 (6)0.9717 (2)0.8957 (2)0.0388 (5)
O70.8307 (6)0.24730 (19)0.9861 (2)0.0668 (6)
H7A0.87660.31191.02130.100*
H7B0.76020.28140.92160.100*
O80.5721 (6)0.27703 (19)0.75910 (17)0.0584 (5)
H8A0.43560.21740.77390.088*
H8B0.43730.34790.74460.088*
O90.2592 (5)0.60054 (19)0.37164 (15)0.0520 (5)
H9A0.10630.61140.32400.078*
H9B0.44790.62320.33000.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0596 (10)0.0565 (10)0.0271 (8)0.0005 (8)0.0094 (7)0.0032 (7)
O20.0961 (15)0.0393 (9)0.0363 (9)0.0075 (9)0.0217 (9)0.0072 (7)
O30.0797 (12)0.0418 (10)0.0325 (9)0.0211 (9)0.0007 (8)0.0009 (7)
O40.0773 (12)0.0496 (10)0.0247 (8)0.0198 (9)0.0002 (8)0.0047 (7)
O50.0951 (15)0.0369 (9)0.0398 (10)0.0166 (9)0.0136 (9)0.0021 (8)
O60.0812 (13)0.0359 (9)0.0385 (9)0.0153 (8)0.0060 (9)0.0032 (7)
N10.0534 (11)0.0466 (12)0.0355 (11)0.0055 (9)0.0028 (9)0.0024 (9)
N20.0611 (13)0.0366 (10)0.0406 (11)0.0060 (9)0.0160 (10)0.0087 (8)
C10.0440 (11)0.0384 (11)0.0346 (11)0.0078 (9)0.0119 (9)0.0034 (9)
C20.0462 (12)0.0371 (12)0.0355 (11)0.0099 (10)0.0131 (10)0.0036 (9)
C30.0536 (14)0.0597 (16)0.0371 (13)0.0118 (12)0.0048 (11)0.0075 (12)
C40.0533 (15)0.0527 (16)0.072 (2)0.0013 (12)0.0138 (14)0.0202 (14)
C50.0596 (16)0.0382 (13)0.082 (2)0.0024 (11)0.0281 (15)0.0001 (14)
C60.0617 (15)0.0440 (14)0.0493 (14)0.0071 (12)0.0229 (12)0.0107 (11)
C70.0556 (14)0.0381 (13)0.0503 (15)0.0012 (11)0.0105 (12)0.0021 (11)
C80.0370 (11)0.0335 (11)0.0276 (10)0.0049 (9)0.0052 (8)0.0024 (8)
C90.0373 (11)0.0297 (10)0.0282 (10)0.0016 (8)0.0046 (8)0.0012 (8)
C100.0376 (10)0.0315 (10)0.0254 (10)0.0016 (8)0.0046 (8)0.0009 (8)
C110.0397 (10)0.0307 (10)0.0274 (11)0.0001 (8)0.0064 (8)0.0032 (8)
C120.0388 (10)0.0297 (10)0.0337 (12)0.0030 (8)0.0085 (9)0.0006 (9)
C130.0394 (11)0.0321 (11)0.0280 (10)0.0007 (9)0.0040 (8)0.0028 (8)
C140.0421 (11)0.0389 (12)0.0267 (11)0.0014 (9)0.0061 (9)0.0025 (9)
C150.0412 (11)0.0350 (12)0.0281 (11)0.0024 (9)0.0038 (9)0.0021 (9)
C160.0485 (12)0.0308 (11)0.0363 (12)0.0012 (9)0.0093 (10)0.0037 (10)
O70.0998 (16)0.0385 (9)0.0595 (12)0.0173 (9)0.0252 (11)0.0076 (9)
O80.0766 (13)0.0444 (10)0.0464 (10)0.0072 (8)0.0049 (9)0.0089 (8)
O90.0559 (10)0.0711 (12)0.0274 (8)0.0039 (9)0.0054 (7)0.0029 (8)
Geometric parameters (Å, º) top
O1—C141.252 (3)C5—H50.9300
O2—C141.252 (3)C6—H6A0.9300
O3—C151.206 (3)C7—H70.9300
O4—C151.304 (3)C8—C91.386 (3)
O4—H40.8200C8—C131.397 (3)
O5—C161.214 (3)C8—C141.503 (3)
O6—C161.308 (3)C9—C101.388 (3)
O6—H60.8200C9—H90.9300
N1—C71.325 (3)C10—C111.390 (3)
N1—C11.384 (3)C10—C151.496 (3)
N1—H10.8600C11—C121.390 (3)
N2—C71.313 (4)C11—H110.9300
N2—C21.384 (3)C12—C131.385 (3)
N2—H20.8600C12—C161.487 (3)
C1—C61.388 (3)C13—H130.9300
C1—C21.389 (3)O7—H7A0.8500
C2—C31.390 (4)O7—H7B0.8499
C3—C41.378 (4)O8—H8A0.8500
C3—H30.9300O8—H8B0.8500
C4—C51.394 (5)O9—H9A0.8500
C4—H4A0.9300O9—H9B0.8500
C5—C61.366 (5)
C15—O4—H4109.5C9—C8—C14121.44 (18)
C16—O6—H6109.5C13—C8—C14119.20 (18)
C7—N1—C1108.8 (2)C8—C9—C10120.62 (18)
C7—N1—H1125.6C8—C9—H9119.7
C1—N1—H1125.6C10—C9—H9119.7
C7—N2—C2108.8 (2)C9—C10—C11119.75 (19)
C7—N2—H2125.6C9—C10—C15120.17 (18)
C2—N2—H2125.6C11—C10—C15120.06 (19)
N1—C1—C6132.4 (2)C12—C11—C10120.10 (19)
N1—C1—C2105.9 (2)C12—C11—H11120.0
C6—C1—C2121.7 (2)C10—C11—H11120.0
N2—C2—C1106.4 (2)C13—C12—C11119.81 (19)
N2—C2—C3132.0 (2)C13—C12—C16122.13 (19)
C1—C2—C3121.5 (2)C11—C12—C16118.02 (18)
C4—C3—C2116.2 (2)C12—C13—C8120.39 (19)
C4—C3—H3121.9C12—C13—H13119.8
C2—C3—H3121.9C8—C13—H13119.8
C3—C4—C5121.9 (3)O1—C14—O2124.6 (2)
C3—C4—H4A119.1O1—C14—C8116.94 (19)
C5—C4—H4A119.1O2—C14—C8118.41 (19)
C6—C5—C4122.0 (3)O3—C15—O4123.5 (2)
C6—C5—H5119.0O3—C15—C10123.5 (2)
C4—C5—H5119.0O4—C15—C10113.00 (18)
C5—C6—C1116.6 (3)O5—C16—O6123.0 (2)
C5—C6—H6A121.7O5—C16—C12122.6 (2)
C1—C6—H6A121.7O6—C16—C12114.39 (19)
N2—C7—N1110.0 (2)H7A—O7—H7B105.2
N2—C7—H7125.0H8A—O8—H8B105.1
N1—C7—H7125.0H9A—O9—H9B105.1
C9—C8—C13119.31 (19)
C7—N1—C1—C6178.5 (2)C9—C10—C11—C120.3 (3)
C7—N1—C1—C20.8 (3)C15—C10—C11—C12178.1 (2)
C7—N2—C2—C10.0 (3)C10—C11—C12—C131.1 (3)
C7—N2—C2—C3179.4 (2)C10—C11—C12—C16178.9 (2)
N1—C1—C2—N20.4 (2)C11—C12—C13—C81.2 (3)
C6—C1—C2—N2178.9 (2)C16—C12—C13—C8178.9 (2)
N1—C1—C2—C3179.9 (2)C9—C8—C13—C120.1 (3)
C6—C1—C2—C30.6 (3)C14—C8—C13—C12177.29 (18)
N2—C2—C3—C4178.9 (2)C9—C8—C14—O1156.9 (2)
C1—C2—C3—C40.4 (3)C13—C8—C14—O120.4 (3)
C2—C3—C4—C50.1 (4)C9—C8—C14—O222.2 (3)
C3—C4—C5—C60.2 (4)C13—C8—C14—O2160.5 (2)
C4—C5—C6—C10.1 (4)C9—C10—C15—O31.2 (3)
N1—C1—C6—C5179.4 (3)C11—C10—C15—O3179.6 (2)
C2—C1—C6—C50.3 (3)C9—C10—C15—O4178.3 (2)
C2—N2—C7—N10.5 (3)C11—C10—C15—O40.1 (3)
C1—N1—C7—N20.8 (3)C13—C12—C16—O5175.6 (2)
C13—C8—C9—C101.5 (3)C11—C12—C16—O52.1 (3)
C14—C8—C9—C10175.82 (19)C13—C12—C16—O63.8 (3)
C8—C9—C10—C111.6 (3)C11—C12—C16—O6178.4 (2)
C8—C9—C10—C15176.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O9i0.821.732.539 (2)169
O6—H6···O7ii0.821.772.589 (2)176
N1—H1···O8iii0.861.972.812 (3)167
N2—H2···O2iv0.861.872.721 (3)173
O7—H7A···O20.851.922.760 (3)173
O7—H7B···O80.852.092.877 (3)155
O8—H8A···O5v0.851.992.797 (3)159
O8—H8B···O3iii0.851.922.730 (2)160
O9—H9A···O1iv0.851.812.654 (2)173
O9—H9B···O1vi0.851.862.685 (3)163
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z; (iii) x1, y, z; (iv) x1, y, z1; (v) x, y1, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formulaC7H7N2+·C9H5O6·3H2O
Mr382.32
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)3.8478 (2), 10.2231 (6), 11.2982 (7)
α, β, γ (°)85.522 (1), 80.707 (1), 81.826 (1)
V3)433.45 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
2240, 1536, 1478
Rint0.008
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.04
No. of reflections1536
No. of parameters246
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O9i0.821.732.539 (2)168.8
O6—H6···O7ii0.821.772.589 (2)176.3
N1—H1···O8iii0.861.972.812 (3)167.0
N2—H2···O2iv0.861.872.721 (3)172.7
O7—H7A···O20.851.922.760 (3)172.8
O7—H7B···O80.852.092.877 (3)154.6
O8—H8A···O5v0.851.992.797 (3)159.1
O8—H8B···O3iii0.851.922.730 (2)160.0
O9—H9A···O1iv0.851.812.654 (2)172.5
O9—H9B···O1vi0.851.862.685 (3)162.6
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z; (iii) x1, y, z; (iv) x1, y, z1; (v) x, y1, z; (vi) x, y, z1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Tianjin Key Laboratory of Structure and Performance for Functional Mol­ecule.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, S., Huo, L.-H., Gu, C.-S., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, o1856–o1858.  CrossRef IUCr Journals Google Scholar
First citationOxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J. 11, 1–13.  Web of Science CSD CrossRef Google Scholar
First citationRemenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmán, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc. 125, 8456–8457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaworotko, M. J. (2001). Chem. Commun. pp. 1–9.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds