metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyano­meth­yl-1,4-diazo­niabi­cyclo­[2.2.2]octane tetra­bromidocuprate(II)

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cyik@163.com

(Received 11 June 2010; accepted 17 June 2010; online 23 June 2010)

In the crystal structure of the title complex, (C8H15N3)[CuBr4], the Cu atom is coordinated by four bromido ligands within a strongly distorted tetra­hedron. The anions and cations are connected by weak N—H⋯Br and C—H⋯Br hydrogen-bonding inter­actions.

Related literature

For the uses of DABCO (1,4-diaza­bicyclo­[2.2.2]octa­ne) and its derivatives, see: Basaviah et al. (2003[Basaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811-891.]); Chen et al. (2010[Chen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16-21.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H15N3)[CuBr4]

  • Mr = 536.41

  • Monoclinic, P 21 /c

  • a = 8.4793 (17) Å

  • b = 13.911 (3) Å

  • c = 12.506 (3) Å

  • β = 97.75 (3)°

  • V = 1461.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.41 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.041, Tmax = 0.092

  • 14798 measured reflections

  • 3347 independent reflections

  • 2642 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.099

  • S = 1.10

  • 3347 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.48 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯Br3i 0.96 2.62 3.420 (5) 142
N3—H3C⋯Br2i 0.96 2.95 3.545 (5) 122
C4—H4A⋯Br3i 0.97 2.92 3.555 (6) 124
N3—H3C⋯Br4 0.96 2.86 3.406 (5) 117
C2—H2A⋯Br1ii 0.97 2.91 3.638 (6) 132
C2—H2B⋯Br4iii 0.97 2.73 3.608 (6) 150
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,4-Diazabicyclo[2.2.2]octane (DABCO) is used as a good organocatalyst for a large number of reactions because of its nucleophilicity (Basaviah et al., 2003) and some of its derivatives are ferroelectrics (Chen et al., 2010). The structure determination of the title compound was performed within a project on the electric properties of 1,4-Diazabicyclo[2.2.2]octane derivatives. Within this project the crystals were obtained by accident.

The asymmetric unit of the title compound, (I), is shown in Fig. 1. The Cu atoms are coordinated by four Br atoms with very similar distances in the range of 2.36 (1) to 2.41 (4) Å. The Br—Cu—Br bond angles are between 97.32 (4) and 126.31 (4)° which shows that the coordination polyhedron can be described as a strongly disotorted tetrahedron. The (C8H14N3)2+ cations are connected to the CuBr42- anions via very weak intermolecular interactions (Fig. 2 and Table 1).

Related literature top

For the uses of DABCO (1,4-diazabicyclo[2.2.2]octane) and its derivatives, see: Basaviah et al. (2003); Chen et al. (2010).

Experimental top

1,4-Diaza-bicyclo[2.2.2]octane (dabco) (0.05 mol, 5.6 g) and bromoacetonitrile (0.1 mol, 12.00 g) were dissolved in CH3CN (40 ml) with stirring for 1 h at room temperature. 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide quickly formed as a white solid was filtered, washed with acetonitrile and dried (yield: 80%).

CuBr2 (0.001 mol, 0.223 g) and 4 ml 60% HBr were dissolved in MeOH (20 ml) and 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide (0.002 mol, 0.464 g) dissolved in 10 ml of methanol was added. The mixture was stirred until a clear solution was obtained. After slow evaporation of the solvent, colourless plate crystals of the title compand suitable for X-ray analysis were obtained in about 68% yield.

Refinement top

H atoms bound to carbon and nitrogen were placed in idealized positions [C—H = 0.97 Å and N—H = 0.96 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a axis. Intermolecular interactions are shown as dashed lines.
1-Cyanomethyl-1,4-diazoniabicyclo[2.2.2]octane tetrabromidocuprate(II) top
Crystal data top
(C8H15N3)[CuBr4]F(000) = 1012
Mr = 536.41Dx = 2.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3450 reflections
a = 8.4793 (17) Åθ = 6.2–55.3°
b = 13.911 (3) ŵ = 12.41 mm1
c = 12.506 (3) ÅT = 293 K
β = 97.75 (3)°Block, brown
V = 1461.7 (5) Å30.3 × 0.3 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
3347 independent reflections
Radiation source: fine-focus sealed tube2642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1110
Tmin = 0.041, Tmax = 0.092k = 1817
14798 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0321P)2 + 5.2474P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3347 reflectionsΔρmax = 1.48 e Å3
145 parametersΔρmin = 0.93 e Å3
0 restraintsExtinction correction: SHELXS
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0476 (15)
Crystal data top
(C8H15N3)[CuBr4]V = 1461.7 (5) Å3
Mr = 536.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4793 (17) ŵ = 12.41 mm1
b = 13.911 (3) ÅT = 293 K
c = 12.506 (3) Å0.3 × 0.3 × 0.2 mm
β = 97.75 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3347 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2642 reflections with I > 2σ(I)
Tmin = 0.041, Tmax = 0.092Rint = 0.069
14798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.10Δρmax = 1.48 e Å3
3347 reflectionsΔρmin = 0.93 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.95523 (8)0.14445 (5)0.53910 (5)0.03184 (18)
Br20.50194 (8)0.14394 (5)0.54689 (5)0.02883 (17)
Br30.66511 (8)0.39414 (4)0.52626 (5)0.02810 (17)
Br40.73530 (8)0.25471 (5)0.29836 (5)0.02880 (17)
Cu10.71711 (9)0.23115 (5)0.48323 (6)0.02398 (19)
N30.3831 (6)0.1546 (3)0.1900 (4)0.0200 (11)
H3C0.47610.17120.15850.024*
N20.1266 (5)0.0841 (3)0.2321 (4)0.0142 (10)
C60.4153 (8)0.0598 (4)0.2422 (5)0.0280 (14)
H6A0.49880.06580.30300.034*
H6B0.45050.01480.19120.034*
C40.2717 (7)0.1424 (5)0.0866 (5)0.0244 (14)
H4A0.32280.10550.03520.029*
H4B0.24250.20470.05510.029*
C50.2642 (7)0.0233 (5)0.2805 (6)0.0323 (16)
H5A0.24610.04320.25870.039*
H5B0.27430.02640.35860.039*
C10.0752 (7)0.0431 (4)0.2002 (5)0.0236 (14)
C20.0285 (7)0.0450 (4)0.2597 (5)0.0245 (14)
H2A0.01820.03190.33660.029*
H2B0.11120.09300.24310.029*
N10.1173 (7)0.1086 (4)0.1523 (5)0.0367 (14)
C30.1243 (7)0.0901 (5)0.1130 (4)0.0253 (14)
H3A0.02960.12410.08110.030*
H3B0.12120.02580.08260.030*
C70.3101 (7)0.2214 (4)0.2631 (5)0.0234 (13)
H7A0.30020.28520.23170.028*
H7B0.37710.22550.33230.028*
C80.1493 (8)0.1836 (4)0.2783 (6)0.0286 (15)
H8A0.06750.22590.24270.034*
H8B0.13900.18220.35460.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0348 (4)0.0360 (4)0.0249 (3)0.0130 (3)0.0046 (3)0.0072 (3)
Br20.0327 (4)0.0263 (3)0.0280 (4)0.0016 (3)0.0064 (3)0.0013 (3)
Br30.0331 (4)0.0195 (3)0.0339 (4)0.0001 (3)0.0121 (3)0.0011 (3)
Br40.0297 (3)0.0368 (4)0.0197 (3)0.0029 (3)0.0026 (3)0.0015 (3)
Cu10.0270 (4)0.0230 (4)0.0223 (4)0.0029 (3)0.0050 (3)0.0014 (3)
N30.019 (2)0.025 (3)0.017 (3)0.003 (2)0.006 (2)0.004 (2)
N20.017 (2)0.012 (2)0.013 (2)0.0007 (19)0.0032 (19)0.0025 (18)
C60.026 (3)0.029 (3)0.028 (4)0.007 (3)0.001 (3)0.003 (3)
C40.020 (3)0.036 (4)0.016 (3)0.009 (3)0.002 (2)0.000 (3)
C50.023 (3)0.024 (3)0.048 (4)0.002 (3)0.003 (3)0.012 (3)
C10.026 (3)0.018 (3)0.025 (3)0.005 (3)0.003 (3)0.008 (3)
C20.025 (3)0.024 (3)0.026 (3)0.007 (3)0.010 (3)0.002 (3)
N10.042 (4)0.028 (3)0.036 (3)0.012 (3)0.008 (3)0.009 (3)
C30.023 (3)0.045 (4)0.008 (3)0.007 (3)0.001 (2)0.002 (3)
C70.023 (3)0.019 (3)0.029 (3)0.004 (3)0.005 (3)0.006 (3)
C80.040 (4)0.015 (3)0.035 (4)0.010 (3)0.022 (3)0.013 (3)
Geometric parameters (Å, º) top
Br1—Cu12.3747 (11)C4—H4A0.9700
Br2—Cu12.4137 (11)C4—H4B0.9700
Br3—Cu12.3852 (10)C5—H5A0.9700
Br4—Cu12.3606 (11)C5—H5B0.9700
N3—C61.480 (8)C1—N11.122 (8)
N3—C71.494 (7)C1—C21.460 (8)
N3—C41.505 (7)C2—H2A0.9700
N3—H3C0.9568C2—H2B0.9700
N2—C31.490 (7)C3—H3A0.9700
N2—C51.501 (8)C3—H3B0.9700
N2—C81.502 (7)C7—C81.497 (8)
N2—C21.506 (7)C7—H7A0.9700
C6—C51.515 (9)C7—H7B0.9700
C6—H6A0.9700C8—H8A0.9700
C6—H6B0.9700C8—H8B0.9700
C4—C31.520 (8)
Br4—Cu1—Br1101.15 (4)N2—C5—H5A109.8
Br4—Cu1—Br397.32 (4)C6—C5—H5A109.8
Br1—Cu1—Br3126.31 (4)N2—C5—H5B109.8
Br4—Cu1—Br2123.02 (4)C6—C5—H5B109.8
Br1—Cu1—Br2107.35 (4)H5A—C5—H5B108.3
Br3—Cu1—Br2103.44 (4)N1—C1—C2176.7 (7)
C6—N3—C7110.6 (5)C1—C2—N2111.8 (5)
C6—N3—C4109.6 (5)C1—C2—H2A109.3
C7—N3—C4109.4 (5)N2—C2—H2A109.3
C6—N3—H3C106.5C1—C2—H2B109.3
C7—N3—H3C122.3N2—C2—H2B109.3
C4—N3—H3C97.4H2A—C2—H2B107.9
C3—N2—C5109.8 (5)N2—C3—C4110.1 (5)
C3—N2—C8108.5 (5)N2—C3—H3A109.6
C5—N2—C8108.2 (5)C4—C3—H3A109.6
C3—N2—C2110.8 (4)N2—C3—H3B109.6
C5—N2—C2111.1 (4)C4—C3—H3B109.6
C8—N2—C2108.4 (4)H3A—C3—H3B108.2
N3—C6—C5108.9 (5)N3—C7—C8108.6 (5)
N3—C6—H6A109.9N3—C7—H7A110.0
C5—C6—H6A109.9C8—C7—H7A110.0
N3—C6—H6B109.9N3—C7—H7B110.0
C5—C6—H6B109.9C8—C7—H7B110.0
H6A—C6—H6B108.3H7A—C7—H7B108.4
N3—C4—C3107.8 (5)C7—C8—N2110.3 (5)
N3—C4—H4A110.1C7—C8—H8A109.6
C3—C4—H4A110.1N2—C8—H8A109.6
N3—C4—H4B110.1C7—C8—H8B109.6
C3—C4—H4B110.1N2—C8—H8B109.6
H4A—C4—H4B108.5H8A—C8—H8B108.1
N2—C5—C6109.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···Br3i0.962.623.420 (5)142
N3—H3C···Br2i0.962.953.545 (5)122
C4—H4A···Br3i0.972.923.555 (6)124
N3—H3C···Br40.962.863.406 (5)117
C2—H2A···Br1ii0.972.913.638 (6)132
C2—H2B···Br4iii0.972.733.608 (6)150
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula(C8H15N3)[CuBr4]
Mr536.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.4793 (17), 13.911 (3), 12.506 (3)
β (°) 97.75 (3)
V3)1461.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)12.41
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.041, 0.092
No. of measured, independent and
observed [I > 2σ(I)] reflections
14798, 3347, 2642
Rint0.069
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.099, 1.10
No. of reflections3347
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.48, 0.93

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···Br3i0.962.623.420 (5)141.9
N3—H3C···Br2i0.962.953.545 (5)121.6
C4—H4A···Br3i0.972.923.555 (6)124.1
N3—H3C···Br40.962.863.406 (5)117.0
C2—H2A···Br1ii0.972.913.638 (6)132.2
C2—H2B···Br4iii0.972.733.608 (6)150.1
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x1, y, z.
 

References

First citationBasaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811–891.  Web of Science PubMed Google Scholar
First citationChen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds