organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-(2-Iso­propyl-5-methyl­phen­­oxy)-N′-(2-oxoindolin-3-yl­­idene)acetohydrazide

aSchool of Chemical Sciences, North Maharashtra University, Jalgaon 425 001, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: bendrers@rediffmail.com

(Received 5 April 2010; accepted 20 May 2010; online 9 June 2010)

In the title Mannich base, C20H21N3O3, an isatin derivative of thymol, the O—CH2—C(=O)–N(H)—N fragment connect­ing the aromatic and fused-ring systems is approximately planar, with the N—N single bond in a Z configuration. The amino H atom of this N—N fragment is intra­molecularly hydrogen bonded to the carbonyl O atom of the indolinone fused ring as well as to the phen­oxy O atom of the aromatic ring. The amino H atom of the indoline fused ring forms a hydrogen bond with the double-bond O atom of an adjacent mol­ecule, this hydrogen bond giving rise to a linear chain motif.

Related literature

For the synthesis, see: Khan et al. (2007[Khan, S. A., Imran, M., Alam, O. & Kaushik, D. (2007). Indian J. Heterocycl. Chem. 16, 251-254.]); Nargud et al. (1996[Nargud, L. V. G., Reddy, G. R. N. & Hariprasad, V. (1996). Indian J. Chem. Sect. B, 35, 499-502.]); Shah et al. (1996[Shah, V. H., Vashi, B. S. & Mehta, D. S. (1996). Indian J. Chem. Sect. B, 35, 111-115.]). For related structures, see: Butcher et al. (2005[Butcher, R. J., Bendre, R. S. & Kuwar, A. S. (2005). Acta Cryst. E61, o3511-o3513.], 2007[Butcher, R. J., Bendre, R. S. & Kuwar, A. S. (2007). Acta Cryst. E63, o3360.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3O3

  • Mr = 351.40

  • Triclinic, [P \overline 1]

  • a = 7.6890 (4) Å

  • b = 8.2206 (5) Å

  • c = 15.3588 (9) Å

  • α = 81.423 (5)°

  • β = 86.843 (5)°

  • γ = 67.992 (5)°

  • V = 890.00 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Oxford Xcalibur Eos (Mova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.965, Tmax = 0.982

  • 19920 measured reflections

  • 3491 independent reflections

  • 2569 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.08

  • 3491 reflections

  • 246 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1 0.91 (2) 2.06 (2) 2.768 (2) 134.1 (19)
N3—H1⋯O3 0.91 (2) 2.17 (2) 2.574 (2) 106.1 (17)
N1—H2⋯O2i 0.91 (2) 1.93 (2) 2.8174 (19) 164 (2)
Symmetry code: (i) x-1, y+1, z.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Several natural phenol derivatives such as carvacrol [5-isopropyl-2-methylphenol], thymol [5-methyl-2-(1-methylethyl) phenol] and eugenol [2-methoxy-4-(2-propenyl)phenol] and their structural analogues show antimicrobial effects. Structural modification of these monoterpenoids has been carried out to improve their biological activity. The crystal structures of compounds containing thymol moiety have been reported by us (Butcher et al. 2007 and Butcher & Bendre 2005). The title compound, (Z)-2-(2-isopropyl-5-methylphenoxy) -N'-(2-oxoindolin-3-ylidene)acetohydrazide was synthesized by considering the importance of phenolic monoterpenoid thymol, 2,3-dioxindole derivatives and its Mannich bases in the enhancement of the biological activity of these compounds. The molecular conformation depicts an interplanar angle of 11.48 between the two rings in the molecule which results from both N—H···O and C—H···O intramolecular hydrogen bonds (Table 1, Fig.1). The molecules are packed mainly by intermolecular N—H···O hydrogen bonds across the centre of inversion which form molecular chains along the crystallographic b-direction. The packing is further stabilized by weak C—H···pi and pi···pi interactions.

Related literature top

For the synthesis, see: Khan et al. (2007); Nargud et al. (1996); Shah et al. (1996). For related structures, see: Butcher et al. (2005, 2007).

Experimental top

The title compound was synthesized from a mixture of 2-(2-isopropyl-5-methylphenoxy)acetohydrazide and isatin. Equimolar quantities of 2-(2-isopropyl-5-methylphenoxy)acetohydrazide (Nargud et al. 1996 and Shah et al. 1996) and isatin (0.02 mole) in 50 ml of dioxan were taken in a 100 ml round bottom flask. To this mixture 5 ml of glacial acetic acid was added. The reaction mixture was refluxed for about 2 hours and then cooled. A solid separated was filtered off with suction to isolate the product (82 % yield) and recrystallized in ethanol, yellow crystals suitable for X-ray diffraction were obtained.

IR (Nujol, cm-1):3400-3300 (N—H of amide), 3209 (N—H of ring), 1715 (C=O of isatin ring), 1686 (C=O of acyclic amide) and 1601 (C=N).

1H NMR (DMSO-d6, ppm): 1.17 (d, 12H, gem CH3), 2.25 (s, 6H, Ar—CH3), 3.56 (heptet, 1H, C—H), 4.83 (s, 2H, OCH2), 6.80-7.59 (m, 7H, Ar—H), 11.32 (s, 1H, N—H of amide linkage) and 13.55 (s, 1H, N—H of isatin ring).

Refinement top

All H atoms were positioned geometrically, (C—H = 0.93 Å, N—H = 0.86 Å) and refined using a riding model with Uiso(H)= 1.2 Ueq(C, N) except the two on nitrogen atoms which were located and refined isotropically.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with intramolecular hydrogen bonds. Displacement ellipsoids drawn at the 50% probability level, the H atoms involved in intramolecular hydrogen bonds are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the a axis. The dotted lines indicate intermolecular N—H···O interactions.
(Z)-2-(2-Isopropyl-5-methylphenoxy)-N'-(2- oxoindolin-3-ylidene)acetohydrazide top
Crystal data top
C20H21N3O3Z = 2
Mr = 351.40F(000) = 372
Triclinic, P1Dx = 1.311 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6890 (4) ÅCell parameters from 19920 reflections
b = 8.2206 (5) Åθ = 2.7–26.0°
c = 15.3588 (9) ŵ = 0.09 mm1
α = 81.423 (5)°T = 100 K
β = 86.843 (5)°Block, yellow
γ = 67.992 (5)°0.40 × 0.20 × 0.20 mm
V = 890.00 (9) Å3
Data collection top
Oxford Xcalibur Eos(Nova) CCD detector
diffractometer
3491 independent reflections
Radiation source: Enhance (Mo) X-ray Source2569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.965, Tmax = 0.982k = 1010
19920 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.143P]
where P = (Fo2 + 2Fc2)/3
3491 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C20H21N3O3γ = 67.992 (5)°
Mr = 351.40V = 890.00 (9) Å3
Triclinic, P1Z = 2
a = 7.6890 (4) ÅMo Kα radiation
b = 8.2206 (5) ŵ = 0.09 mm1
c = 15.3588 (9) ÅT = 100 K
α = 81.423 (5)°0.40 × 0.20 × 0.20 mm
β = 86.843 (5)°
Data collection top
Oxford Xcalibur Eos(Nova) CCD detector
diffractometer
3491 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2569 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.982Rint = 0.049
19920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.54 e Å3
3491 reflectionsΔρmin = 0.42 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.42649 (16)0.34876 (14)0.48742 (8)0.0194 (3)
O30.31459 (17)0.65223 (16)0.29166 (8)0.0259 (3)
O10.09186 (17)0.94154 (16)0.40232 (8)0.0241 (3)
N30.19339 (19)0.61754 (19)0.45023 (10)0.0180 (3)
N10.2913 (2)1.00881 (19)0.52175 (10)0.0198 (3)
C80.0373 (2)0.7470 (2)0.54375 (12)0.0173 (4)
N20.11373 (19)0.61305 (18)0.53194 (10)0.0178 (3)
C70.1447 (2)0.7700 (2)0.62514 (12)0.0182 (4)
C90.3539 (2)0.4815 (2)0.43422 (12)0.0178 (4)
C100.4428 (2)0.5057 (2)0.34560 (11)0.0195 (4)
H10A0.55690.52640.35290.023*
H10B0.47500.39950.31800.023*
C10.1395 (2)0.9084 (2)0.47827 (12)0.0185 (4)
C110.3648 (2)0.6956 (2)0.20616 (12)0.0223 (4)
C20.2984 (2)0.9305 (2)0.60903 (12)0.0186 (4)
C160.5382 (3)0.6086 (2)0.17067 (13)0.0265 (4)
H160.62750.51420.20470.032*
C120.2263 (3)0.8408 (2)0.15720 (13)0.0257 (4)
C50.2538 (3)0.7256 (2)0.77154 (13)0.0258 (4)
H50.24140.65740.82660.031*
C60.1212 (2)0.6671 (2)0.70683 (12)0.0219 (4)
H60.01890.56100.71800.026*
C40.4055 (3)0.8859 (3)0.75476 (13)0.0261 (4)
H40.49220.92350.79920.031*
C30.4304 (2)0.9911 (2)0.67309 (12)0.0241 (4)
H30.53191.09790.66210.029*
C130.2727 (3)0.8916 (3)0.07197 (13)0.0313 (5)
H130.18520.98760.03810.038*
C170.0377 (3)0.9323 (3)0.19774 (14)0.0366 (5)
H170.05940.94130.25880.044*
C140.4449 (3)0.8043 (3)0.03569 (14)0.0351 (5)
H140.47050.84200.02200.042*
C150.5802 (3)0.6616 (3)0.08384 (13)0.0322 (5)
C180.0732 (3)1.1179 (3)0.15283 (15)0.0393 (6)
H18A0.00361.18790.14780.059*
H18B0.18261.17150.18710.059*
H18C0.11071.11170.09520.059*
C200.7679 (3)0.5643 (3)0.04370 (15)0.0485 (7)
H20A0.75890.47250.01430.073*
H20B0.86100.51260.08930.073*
H20C0.80300.64590.00200.073*
C190.0803 (3)0.8207 (3)0.1998 (2)0.0737 (11)
H19A0.10850.81390.14060.110*
H19B0.19490.87360.23080.110*
H19C0.01240.70370.22920.110*
H20.376 (3)1.117 (3)0.4998 (15)0.044 (7)*
H10.141 (3)0.711 (3)0.4077 (14)0.031 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0189 (6)0.0146 (6)0.0197 (7)0.0008 (5)0.0029 (5)0.0007 (5)
O30.0212 (7)0.0253 (7)0.0201 (7)0.0012 (5)0.0010 (5)0.0045 (5)
O10.0221 (7)0.0207 (7)0.0222 (7)0.0023 (5)0.0023 (5)0.0033 (5)
N30.0170 (7)0.0146 (7)0.0179 (8)0.0017 (6)0.0005 (6)0.0002 (6)
N10.0172 (7)0.0138 (7)0.0222 (8)0.0006 (6)0.0012 (6)0.0001 (6)
C80.0150 (8)0.0157 (8)0.0208 (10)0.0049 (7)0.0018 (7)0.0024 (7)
N20.0159 (7)0.0165 (7)0.0197 (8)0.0046 (6)0.0004 (6)0.0026 (6)
C70.0167 (8)0.0166 (9)0.0210 (10)0.0052 (7)0.0005 (7)0.0042 (7)
C90.0147 (8)0.0152 (9)0.0229 (10)0.0040 (7)0.0036 (7)0.0036 (7)
C100.0174 (8)0.0168 (9)0.0195 (10)0.0017 (7)0.0013 (7)0.0003 (7)
C10.0165 (8)0.0152 (8)0.0235 (10)0.0055 (7)0.0023 (7)0.0020 (7)
C110.0258 (10)0.0230 (9)0.0175 (9)0.0092 (8)0.0005 (8)0.0001 (7)
C20.0186 (9)0.0172 (9)0.0203 (10)0.0062 (7)0.0015 (7)0.0041 (7)
C160.0263 (10)0.0228 (10)0.0254 (11)0.0051 (8)0.0015 (8)0.0019 (8)
C120.0279 (10)0.0234 (10)0.0218 (10)0.0054 (8)0.0050 (8)0.0000 (8)
C50.0283 (10)0.0296 (10)0.0196 (10)0.0113 (8)0.0017 (8)0.0011 (8)
C60.0212 (9)0.0188 (9)0.0236 (10)0.0051 (7)0.0046 (8)0.0006 (7)
C40.0226 (9)0.0330 (11)0.0218 (10)0.0075 (8)0.0037 (8)0.0095 (8)
C30.0199 (9)0.0221 (9)0.0264 (11)0.0017 (8)0.0007 (8)0.0073 (8)
C130.0368 (11)0.0269 (10)0.0230 (11)0.0055 (9)0.0085 (9)0.0045 (8)
C170.0314 (11)0.0389 (12)0.0242 (11)0.0010 (9)0.0037 (9)0.0059 (9)
C140.0452 (13)0.0362 (12)0.0197 (11)0.0135 (10)0.0027 (9)0.0034 (9)
C150.0351 (11)0.0326 (11)0.0247 (11)0.0105 (9)0.0052 (9)0.0012 (9)
C180.0361 (12)0.0306 (11)0.0443 (14)0.0021 (9)0.0128 (10)0.0071 (10)
C200.0443 (13)0.0514 (14)0.0315 (13)0.0038 (11)0.0129 (11)0.0080 (11)
C190.0314 (13)0.0332 (13)0.128 (3)0.0019 (11)0.0098 (15)0.0346 (15)
Geometric parameters (Å, º) top
O2—C91.224 (2)C5—C61.386 (3)
O3—C111.382 (2)C5—C41.395 (3)
O3—C101.418 (2)C5—H50.9300
O1—C11.225 (2)C6—H60.9300
N3—C91.360 (2)C4—C31.391 (3)
N3—N21.367 (2)C4—H40.9300
N3—H10.91 (2)C3—H30.9300
N1—C11.359 (2)C13—C141.380 (3)
N1—C21.405 (2)C13—H130.9300
N1—H20.91 (2)C17—C191.509 (3)
C8—N21.293 (2)C17—C181.519 (3)
C8—C71.456 (3)C17—H170.9800
C8—C11.516 (2)C14—C151.385 (3)
C7—C61.385 (3)C14—H140.9300
C7—C21.402 (2)C15—C201.512 (3)
C9—C101.509 (3)C18—H18A0.9600
C10—H10A0.9700C18—H18B0.9600
C10—H10B0.9700C18—H18C0.9600
C11—C161.381 (3)C20—H20A0.9600
C11—C121.411 (3)C20—H20B0.9600
C2—C31.380 (3)C20—H20C0.9600
C16—C151.399 (3)C19—H19A0.9600
C16—H160.9300C19—H19B0.9600
C12—C131.383 (3)C19—H19C0.9600
C12—C171.510 (3)
C11—O3—C10119.11 (13)C7—C6—H6120.8
C9—N3—N2118.88 (14)C5—C6—H6120.8
C9—N3—H1120.7 (13)C3—C4—C5121.62 (17)
N2—N3—H1120.4 (13)C3—C4—H4119.2
C1—N1—C2111.67 (14)C5—C4—H4119.2
C1—N1—H2125.7 (15)C2—C3—C4117.29 (16)
C2—N1—H2122.5 (15)C2—C3—H3121.4
N2—C8—C7125.50 (16)C4—C3—H3121.4
N2—C8—C1128.37 (16)C14—C13—C12122.04 (18)
C7—C8—C1106.13 (14)C14—C13—H13119.0
C8—N2—N3116.19 (15)C12—C13—H13119.0
C6—C7—C2120.41 (17)C12—C17—C19109.79 (19)
C6—C7—C8132.69 (16)C12—C17—C18115.18 (18)
C2—C7—C8106.90 (15)C19—C17—C18108.82 (18)
O2—C9—N3123.63 (17)C12—C17—H17107.6
O2—C9—C10121.00 (15)C19—C17—H17107.6
N3—C9—C10115.35 (14)C18—C17—H17107.6
O3—C10—C9109.16 (13)C13—C14—C15121.05 (19)
O3—C10—H10A109.8C13—C14—H14119.5
C9—C10—H10A109.8C15—C14—H14119.5
O3—C10—H10B109.8C14—C15—C16118.21 (18)
C9—C10—H10B109.8C14—C15—C20121.08 (18)
H10A—C10—H10B108.3C16—C15—C20120.71 (18)
O1—C1—N1127.57 (16)C17—C18—H18A109.5
O1—C1—C8126.61 (15)C17—C18—H18B109.5
N1—C1—C8105.81 (15)H18A—C18—H18B109.5
O3—C11—C16123.51 (16)C17—C18—H18C109.5
O3—C11—C12114.84 (16)H18A—C18—H18C109.5
C16—C11—C12121.63 (17)H18B—C18—H18C109.5
C3—C2—C7121.69 (17)C15—C20—H20A109.5
C3—C2—N1128.83 (16)C15—C20—H20B109.5
C7—C2—N1109.48 (15)H20A—C20—H20B109.5
C11—C16—C15120.33 (17)C15—C20—H20C109.5
C11—C16—H16119.8H20A—C20—H20C109.5
C15—C16—H16119.8H20B—C20—H20C109.5
C13—C12—C11116.72 (17)C17—C19—H19A109.5
C13—C12—C17122.95 (17)C17—C19—H19B109.5
C11—C12—C17120.32 (17)H19A—C19—H19B109.5
C6—C5—C4120.49 (17)C17—C19—H19C109.5
C6—C5—H5119.8H19A—C19—H19C109.5
C4—C5—H5119.8H19B—C19—H19C109.5
C7—C6—C5118.50 (16)
C7—C8—N2—N3179.84 (15)C1—N1—C2—C70.0 (2)
C1—C8—N2—N30.7 (3)O3—C11—C16—C15179.07 (18)
C9—N3—N2—C8179.15 (15)C12—C11—C16—C150.8 (3)
N2—C8—C7—C60.1 (3)O3—C11—C12—C13178.34 (17)
C1—C8—C7—C6179.69 (18)C16—C11—C12—C130.0 (3)
N2—C8—C7—C2179.00 (17)O3—C11—C12—C172.0 (3)
C1—C8—C7—C20.56 (18)C16—C11—C12—C17179.61 (19)
N2—N3—C9—O24.4 (2)C2—C7—C6—C50.6 (3)
N2—N3—C9—C10174.08 (14)C8—C7—C6—C5178.44 (18)
C11—O3—C10—C9178.08 (14)C4—C5—C6—C70.9 (3)
O2—C9—C10—O3169.41 (15)C6—C5—C4—C30.7 (3)
N3—C9—C10—O312.1 (2)C7—C2—C3—C40.3 (3)
C2—N1—C1—O1178.51 (17)N1—C2—C3—C4179.26 (17)
C2—N1—C1—C80.39 (19)C5—C4—C3—C20.1 (3)
N2—C8—C1—O12.1 (3)C11—C12—C13—C140.7 (3)
C7—C8—C1—O1178.33 (17)C17—C12—C13—C14178.9 (2)
N2—C8—C1—N1178.96 (17)C13—C12—C17—C19103.4 (2)
C7—C8—C1—N10.59 (18)C11—C12—C17—C1976.2 (3)
C10—O3—C11—C163.0 (3)C13—C12—C17—C1819.8 (3)
C10—O3—C11—C12178.61 (16)C11—C12—C17—C18160.53 (18)
C6—C7—C2—C30.0 (3)C12—C13—C14—C150.5 (3)
C8—C7—C2—C3179.27 (16)C13—C14—C15—C160.4 (3)
C6—C7—C2—N1179.60 (16)C13—C14—C15—C20179.1 (2)
C8—C7—C2—N10.35 (19)C11—C16—C15—C141.0 (3)
C1—N1—C2—C3179.62 (17)C11—C16—C15—C20178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O10.91 (2)2.06 (2)2.768 (2)134.1 (19)
N3—H1···O30.91 (2)2.17 (2)2.574 (2)106.1 (17)
N1—H2···O2i0.91 (2)1.93 (2)2.8174 (19)164 (2)
C17—H17···O10.982.433.247 (2)140
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H21N3O3
Mr351.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.6890 (4), 8.2206 (5), 15.3588 (9)
α, β, γ (°)81.423 (5), 86.843 (5), 67.992 (5)
V3)890.00 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerOxford Xcalibur Eos(Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.965, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
19920, 3491, 2569
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.08
No. of reflections3491
No. of parameters246
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.42

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O10.91 (2)2.06 (2)2.768 (2)134.1 (19)
N3—H1···O30.91 (2)2.17 (2)2.574 (2)106.1 (17)
N1—H2···O2i0.91 (2)1.93 (2)2.8174 (19)164 (2)
Symmetry code: (i) x1, y+1, z.
 

Acknowledgements

We thank the DST, India, for the funding under DST–FIST (Level II) for the X-ray diffraction facility at SSCU, IISc, Bangalore. CMZ, UDP and RSB acknowledge the UGC, New Delhi, India, for financial assistance. AGD thanks the CSIR, India, for a fellowship.

References

First citationButcher, R. J., Bendre, R. S. & Kuwar, A. S. (2005). Acta Cryst. E61, o3511–o3513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Bendre, R. S. & Kuwar, A. S. (2007). Acta Cryst. E63, o3360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, S. A., Imran, M., Alam, O. & Kaushik, D. (2007). Indian J. Heterocycl. Chem. 16, 251–254.  Google Scholar
First citationNargud, L. V. G., Reddy, G. R. N. & Hariprasad, V. (1996). Indian J. Chem. Sect. B, 35, 499–502.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShah, V. H., Vashi, B. S. & Mehta, D. S. (1996). Indian J. Chem. Sect. B, 35, 111–115.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds