metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(4-pyridyl­meth­­oxy)phenol-κN]silver nitrate monohydrate

aModern Analysis, Test and Research Center, Heilongjiang Institute of Science and Technology, Harbin 150027, People's Republic of China
*Correspondence e-mail: zhanghongsen666@sina.com

(Received 26 May 2010; accepted 1 June 2010; online 5 June 2010)

In the title compound, [Ag(C12H11NO2)2]NO3·H2O, the AgI ion is coordinated by two N atoms from two different 4-(4-pyridyl­meth­oxy)phenol ligands, generating a nearly linear coordination geometry with an N—Ag—N angle of 167.1 (1)°. A three-dimensional supra­molecular network is built from the uncoordinated nitrate anion, the water mol­ecule and the cation through O—H⋯O hydrogen bonds.

Related literature

For the synthesis of the title ligand, see: Gao et al. (2006[Gao, J.-S., Liu, Y., Hou, G.-F., Yu, Y.-H. & Yan, P.-F. (2006). Acta Cryst. E62, o5645-o5646.]); Zou et al. (2009[Zou, P., Liu, Y., Zhang, S., Wang, X. & Gao, J.-S. (2009). Acta Cryst. E65, o2570.]). For backround to metal-organic complexes with flexible pyridyl-based ligands, see: Fun et al. (1999[Fun, H.-K., Raj, S. S. S., Xiong, J.-L., Zuo, J.-L., Yu, Z. & You, X.-Z. (1999). J. Chem. Soc. Dalton Trans. pp. 1915-1916.]); Liu et al. (2010[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010). Cryst. Growth Des. 10, 1559-1568.]); You et al. (2009[You, Z.-L., Zhang, L., Shi, D.-H. & Ni, L.-L. (2009). Inorg. Chem. Commun. 12, 1231-1233.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C12H11NO2)2]NO3·H2O

  • Mr = 590.33

  • Monoclinic, P 21 /c

  • a = 9.458 (4) Å

  • b = 13.507 (7) Å

  • c = 20.274 (7) Å

  • β = 111.986 (18)°

  • V = 2401.6 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 291 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.832, Tmax = 0.857

  • 22423 measured reflections

  • 5442 independent reflections

  • 2900 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.115

  • S = 1.04

  • 5442 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O8i 0.82 1.90 2.661 (4) 155
O3—H3⋯O7 0.82 1.88 2.698 (5) 176
O8—H31⋯O7 0.85 2.05 2.885 (5) 167
O8—H32⋯O3ii 0.85 2.00 2.833 (4) 165
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x-1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The metal-organic compounds constructed by the pyridine-containing ligands have atracted more attention for their novel and virous structures and potential applications (Fun et al. 1999; Liu et al. 2010]. A polynuclear silver(I) complex with 2-hydroxypyridine was synthesized, and the complex maybe served as an efficient urease inhibitor (You et al. 2009). Based on above researches, the title compound was synthesized by reacting pyridine-containing ligand with the AgNO3.

X-ray single-crystal analysis of title compound shows that the AgI is coordinated by two N atoms from two different 4-(4-pyridylmethoxy)-phenol ligands to generate a linear coordination geometry with the N—Ag—N angle of 167.06 (14) ° (Figure 1, Table 1). In each asymmetrical unit, the planes of the pyridine rings and benzene rings are nearly parallel and make dihedral angles of 8.462 (4)° and 7.165 (21) °. But the two ligands are vertical with the dihedral angle of two pyridine rings being 86.779 (11) °.

Two terminal hydroxyl groups, one uncoordinate water and one nitrate ion are linked together to form a three dimensional network through intermolecular O—H···O hydrogen bonds (Figure 2, Table 2).

Related literature top

For the synthesis of the title ligand, see: Gao et al. (2006); Zou et al. (2009). For backround to metal-organic complexes with flexible pyridyl-based ligands, see: Fun et al. (1999); Liu et al. (2010); You et al. (2009).

Experimental top

The synthesis of ligand see the literature (Gao et al. 2006; Zou et al. 2009). A solution of AgNO3 (0.017 g, 0.10 mmol) in water (2 ml) was dropped slowly into a methanol solution (5 ml) of ligand (0.040 g, 2 mmol) to give a clear solution. Colourless block crystals of title were obtained by slow evaporation of the clear solution under room temperature after a week.

Refinement top

H atoms bound to C atoms and hydroxyl groups were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å(aromatic C), C—H = 0.97 Å (methene C), and with Uiso(H) = 1.2Ueq(C). The H atoms of water moleule were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing diagram of title compound, viewed along a axis. Dashed lines indicate hydrogen bonds, noinvolving hrdrogen atoms are omited for clarity.
Bis[4-(4-pyridylmethoxy)phenol-κN]silver nitrate monohydrate top
Crystal data top
[Ag(C12H11NO2)2]NO3·H2OF(000) = 1200
Mr = 590.33Dx = 1.633 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11930 reflections
a = 9.458 (4) Åθ = 3.0–27.5°
b = 13.507 (7) ŵ = 0.89 mm1
c = 20.274 (7) ÅT = 291 K
β = 111.986 (18)°Block, colorless
V = 2401.6 (18) Å30.21 × 0.19 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5442 independent reflections
Radiation source: fine-focus sealed tube2900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.832, Tmax = 0.857k = 1717
22423 measured reflectionsl = 2326
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.9527P]
where P = (Fo2 + 2Fc2)/3
5442 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ag(C12H11NO2)2]NO3·H2OV = 2401.6 (18) Å3
Mr = 590.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.458 (4) ŵ = 0.89 mm1
b = 13.507 (7) ÅT = 291 K
c = 20.274 (7) Å0.21 × 0.19 × 0.18 mm
β = 111.986 (18)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5442 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2900 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.857Rint = 0.058
22423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
5442 reflectionsΔρmin = 0.38 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.90730 (4)0.49819 (3)0.766410 (16)0.07746 (16)
O12.1641 (3)0.7496 (2)1.22381 (14)0.0838 (9)
H1A2.23140.74531.20760.126*
O21.6021 (3)0.6618 (2)1.01902 (13)0.0673 (7)
O30.3575 (3)0.6172 (2)0.27642 (14)0.0818 (9)
H30.39670.56570.25660.123*
O40.2108 (3)0.5574 (2)0.48365 (13)0.0648 (7)
N11.0938 (4)0.5514 (3)0.85577 (17)0.0599 (8)
N20.7030 (4)0.4783 (3)0.67566 (16)0.0605 (9)
C11.8626 (4)0.6955 (3)1.0520 (2)0.0616 (10)
H11.84870.68921.00430.074*
C22.0045 (4)0.7167 (3)1.1011 (2)0.0622 (10)
H22.08610.72481.08660.075*
C32.0268 (4)0.7261 (3)1.1721 (2)0.0596 (10)
C41.9048 (5)0.7140 (3)1.1922 (2)0.0662 (11)
H41.91880.72031.23990.079*
C51.7617 (4)0.6927 (3)1.14314 (19)0.0625 (11)
H51.68020.68471.15780.075*
C61.7397 (4)0.6832 (3)1.07254 (19)0.0557 (10)
C71.4773 (4)0.6405 (3)1.03879 (19)0.0600 (10)
H7A1.45080.69851.06000.072*
H7B1.50370.58731.07350.072*
C81.3450 (4)0.6102 (3)0.97345 (19)0.0528 (9)
C91.2098 (4)0.5805 (3)0.9801 (2)0.0617 (11)
H91.20150.58001.02440.074*
C101.0896 (4)0.5522 (3)0.9206 (2)0.0625 (10)
H101.00010.53230.92570.075*
C111.2229 (5)0.5806 (3)0.8502 (2)0.0723 (12)
H111.22840.58040.80530.087*
C121.3483 (4)0.6109 (3)0.9068 (2)0.0631 (11)
H121.43540.63180.89980.076*
C130.6144 (5)0.5569 (4)0.6534 (2)0.0676 (11)
H130.64930.61680.67630.081*
C140.4742 (4)0.5559 (3)0.5987 (2)0.0620 (10)
H140.41680.61360.58540.074*
C150.4202 (4)0.4684 (3)0.56382 (18)0.0508 (9)
C160.5105 (5)0.3864 (3)0.5868 (2)0.0653 (11)
H160.47810.32550.56500.078*
C170.6492 (5)0.3944 (4)0.6421 (2)0.0677 (11)
H170.70850.33760.65680.081*
C180.2680 (4)0.4611 (3)0.50477 (19)0.0562 (10)
H18A0.27750.42620.46480.067*
H18B0.19830.42450.52060.067*
C190.0684 (4)0.5651 (3)0.43111 (18)0.0536 (9)
C200.0174 (4)0.4872 (3)0.3943 (2)0.0585 (10)
H200.02040.42300.40420.070*
C210.1600 (4)0.5033 (3)0.34252 (19)0.0604 (10)
H210.21790.45000.31780.072*
C220.2163 (4)0.5970 (4)0.32752 (19)0.0611 (11)
C230.1309 (5)0.6762 (3)0.3639 (2)0.0657 (11)
H230.16880.74030.35370.079*
C240.0111 (5)0.6598 (3)0.4155 (2)0.0644 (11)
H240.06900.71320.44020.077*
O50.6790 (5)0.5495 (3)0.15883 (18)0.1028 (11)
O60.7139 (5)0.3980 (4)0.1501 (3)0.169 (2)
O70.4972 (4)0.4493 (3)0.21269 (17)0.0924 (10)
N30.6322 (5)0.4659 (4)0.1726 (2)0.0748 (11)
O80.4291 (3)0.2671 (2)0.29281 (18)0.0947 (10)
H310.44220.31650.26510.142*
H320.48040.21840.26940.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0540 (2)0.1015 (3)0.0613 (2)0.01044 (19)0.00368 (15)0.00670 (19)
O10.0576 (18)0.114 (3)0.0640 (17)0.0152 (17)0.0045 (15)0.0085 (16)
O20.0477 (16)0.094 (2)0.0534 (15)0.0097 (15)0.0109 (13)0.0040 (14)
O30.0646 (18)0.097 (2)0.0640 (17)0.0063 (17)0.0008 (15)0.0130 (16)
O40.0518 (17)0.0639 (19)0.0626 (16)0.0080 (14)0.0031 (14)0.0036 (14)
N10.049 (2)0.061 (2)0.059 (2)0.0014 (17)0.0082 (16)0.0005 (16)
N20.050 (2)0.078 (3)0.0505 (18)0.0069 (18)0.0148 (16)0.0006 (17)
C10.060 (3)0.071 (3)0.054 (2)0.004 (2)0.021 (2)0.0004 (19)
C20.050 (2)0.070 (3)0.062 (2)0.003 (2)0.016 (2)0.000 (2)
C30.048 (2)0.056 (3)0.061 (2)0.0021 (19)0.005 (2)0.0006 (19)
C40.063 (3)0.080 (3)0.049 (2)0.004 (2)0.015 (2)0.004 (2)
C50.055 (2)0.076 (3)0.054 (2)0.002 (2)0.017 (2)0.001 (2)
C60.048 (2)0.055 (3)0.054 (2)0.0013 (18)0.0072 (19)0.0030 (18)
C70.046 (2)0.071 (3)0.057 (2)0.004 (2)0.0127 (19)0.0061 (19)
C80.051 (2)0.044 (2)0.057 (2)0.0041 (18)0.0119 (18)0.0015 (17)
C90.054 (2)0.074 (3)0.054 (2)0.003 (2)0.017 (2)0.001 (2)
C100.049 (2)0.072 (3)0.061 (2)0.004 (2)0.014 (2)0.002 (2)
C110.066 (3)0.096 (4)0.052 (2)0.008 (3)0.018 (2)0.002 (2)
C120.055 (2)0.075 (3)0.057 (2)0.012 (2)0.017 (2)0.003 (2)
C130.066 (3)0.067 (3)0.062 (2)0.015 (2)0.015 (2)0.009 (2)
C140.054 (3)0.061 (3)0.063 (2)0.005 (2)0.013 (2)0.001 (2)
C150.046 (2)0.063 (3)0.0435 (19)0.0065 (18)0.0169 (17)0.0004 (17)
C160.060 (3)0.063 (3)0.061 (2)0.002 (2)0.010 (2)0.010 (2)
C170.062 (3)0.074 (3)0.057 (2)0.005 (2)0.012 (2)0.001 (2)
C180.052 (2)0.065 (3)0.049 (2)0.005 (2)0.0150 (19)0.0022 (18)
C190.046 (2)0.065 (3)0.048 (2)0.009 (2)0.0151 (18)0.0033 (19)
C200.055 (2)0.058 (3)0.057 (2)0.001 (2)0.0141 (19)0.0002 (19)
C210.059 (2)0.071 (3)0.0472 (19)0.010 (2)0.0144 (18)0.006 (2)
C220.056 (3)0.079 (3)0.044 (2)0.000 (2)0.0134 (19)0.008 (2)
C230.072 (3)0.057 (3)0.063 (2)0.006 (2)0.019 (2)0.011 (2)
C240.065 (3)0.061 (3)0.057 (2)0.009 (2)0.010 (2)0.002 (2)
O50.110 (3)0.107 (3)0.076 (2)0.020 (3)0.017 (2)0.013 (2)
O60.090 (3)0.114 (4)0.244 (6)0.034 (3)0.006 (3)0.019 (4)
O70.054 (2)0.119 (3)0.088 (2)0.0052 (19)0.0086 (18)0.010 (2)
N30.056 (3)0.097 (4)0.066 (2)0.005 (2)0.017 (2)0.007 (2)
O80.072 (2)0.089 (2)0.115 (3)0.0035 (18)0.0242 (19)0.0212 (19)
Geometric parameters (Å, º) top
Ag1—N12.126 (3)C10—H100.9300
Ag1—N22.128 (3)C11—C121.368 (5)
O1—C31.366 (4)C11—H110.9300
O1—H1A0.8200C12—H120.9300
O2—C61.377 (4)C13—C141.374 (5)
O2—C71.411 (4)C13—H130.9300
O3—C221.377 (4)C14—C151.374 (5)
O3—H30.8201C14—H140.9300
O4—C191.373 (4)C15—C161.370 (5)
O4—C181.411 (5)C15—C181.491 (5)
N1—C111.328 (5)C16—C171.375 (5)
N1—C101.330 (5)C16—H160.9300
N2—C171.321 (5)C17—H170.9300
N2—C131.323 (5)C18—H18A0.9700
C1—C21.369 (5)C18—H18B0.9700
C1—C61.384 (5)C19—C201.368 (5)
C1—H10.9300C19—C241.379 (5)
C2—C31.380 (5)C20—C211.382 (5)
C2—H20.9300C20—H200.9300
C3—C41.371 (5)C21—C221.362 (5)
C4—C51.376 (5)C21—H210.9300
C4—H40.9300C22—C231.377 (6)
C5—C61.373 (5)C23—C241.376 (5)
C5—H50.9300C23—H230.9300
C7—C81.499 (5)C24—H240.9300
C7—H7A0.9700O5—N31.206 (5)
C7—H7B0.9700O6—N31.176 (5)
C8—C121.364 (5)O7—N31.251 (5)
C8—C91.394 (5)O8—H310.8500
C9—C101.367 (5)O8—H320.8499
C9—H90.9300
N1—Ag1—N2167.10 (13)C8—C12—C11119.7 (4)
C3—O1—H1A109.5C8—C12—H12120.2
C6—O2—C7117.6 (3)C11—C12—H12120.2
C22—O3—H3109.5N2—C13—C14124.3 (4)
C19—O4—C18117.3 (3)N2—C13—H13117.8
C11—N1—C10116.8 (3)C14—C13—H13117.8
C11—N1—Ag1121.6 (3)C15—C14—C13119.0 (4)
C10—N1—Ag1121.5 (3)C15—C14—H14120.5
C17—N2—C13116.1 (4)C13—C14—H14120.5
C17—N2—Ag1127.1 (3)C16—C15—C14117.1 (4)
C13—N2—Ag1116.6 (3)C16—C15—C18120.7 (4)
C2—C1—C6120.8 (4)C14—C15—C18122.1 (4)
C2—C1—H1119.6C15—C16—C17119.9 (4)
C6—C1—H1119.6C15—C16—H16120.1
C1—C2—C3120.2 (4)C17—C16—H16120.1
C1—C2—H2119.9N2—C17—C16123.5 (4)
C3—C2—H2119.9N2—C17—H17118.2
O1—C3—C4117.6 (3)C16—C17—H17118.2
O1—C3—C2123.5 (4)O4—C18—C15109.1 (3)
C4—C3—C2118.8 (4)O4—C18—H18A109.9
C3—C4—C5121.3 (4)C15—C18—H18A109.9
C3—C4—H4119.3O4—C18—H18B109.9
C5—C4—H4119.3C15—C18—H18B109.9
C6—C5—C4119.8 (4)H18A—C18—H18B108.3
C6—C5—H5120.1C20—C19—O4125.0 (4)
C4—C5—H5120.1C20—C19—C24119.1 (4)
C5—C6—O2124.8 (3)O4—C19—C24115.8 (4)
C5—C6—C1119.1 (4)C19—C20—C21120.3 (4)
O2—C6—C1116.2 (3)C19—C20—H20119.9
O2—C7—C8108.4 (3)C21—C20—H20119.9
O2—C7—H7A110.0C22—C21—C20120.4 (4)
C8—C7—H7A110.0C22—C21—H21119.8
O2—C7—H7B110.0C20—C21—H21119.8
C8—C7—H7B110.0C21—C22—C23120.0 (4)
H7A—C7—H7B108.4C21—C22—O3122.7 (4)
C12—C8—C9117.4 (4)C23—C22—O3117.3 (4)
C12—C8—C7123.5 (4)C24—C23—C22119.5 (4)
C9—C8—C7119.0 (3)C24—C23—H23120.2
C10—C9—C8119.0 (4)C22—C23—H23120.2
C10—C9—H9120.5C23—C24—C19120.7 (4)
C8—C9—H9120.5C23—C24—H24119.6
N1—C10—C9123.5 (4)C19—C24—H24119.6
N1—C10—H10118.2O6—N3—O5120.7 (5)
C9—C10—H10118.2O6—N3—O7118.3 (5)
N1—C11—C12123.6 (4)O5—N3—O7121.0 (5)
N1—C11—H11118.2H31—O8—H32109.0
C12—C11—H11118.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O8i0.821.902.661 (4)155
O3—H3···O70.821.882.698 (5)176
O8—H31···O70.852.052.885 (5)167
O8—H32···O3ii0.852.002.833 (4)165
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(C12H11NO2)2]NO3·H2O
Mr590.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.458 (4), 13.507 (7), 20.274 (7)
β (°) 111.986 (18)
V3)2401.6 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.21 × 0.19 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.832, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
22423, 5442, 2900
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.115, 1.04
No. of reflections5442
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.38

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O8i0.821.902.661 (4)154.9
O3—H3···O70.821.882.698 (5)176.3
O8—H31···O70.852.052.885 (5)166.9
O8—H32···O3ii0.852.002.833 (4)164.9
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x1, y1/2, z+1/2.
 

Acknowledgements

The author thanks Heilongjiang Institute of Science and Technology for supporting this study.

References

First citationFun, H.-K., Raj, S. S. S., Xiong, J.-L., Zuo, J.-L., Yu, Z. & You, X.-Z. (1999). J. Chem. Soc. Dalton Trans. pp. 1915–1916.  Web of Science CSD CrossRef Google Scholar
First citationGao, J.-S., Liu, Y., Hou, G.-F., Yu, Y.-H. & Yan, P.-F. (2006). Acta Cryst. E62, o5645–o5646.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010). Cryst. Growth Des. 10, 1559–1568.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Z.-L., Zhang, L., Shi, D.-H. & Ni, L.-L. (2009). Inorg. Chem. Commun. 12, 1231–1233.  Web of Science CSD CrossRef CAS Google Scholar
First citationZou, P., Liu, Y., Zhang, S., Wang, X. & Gao, J.-S. (2009). Acta Cryst. E65, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds