metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetato-κO)[1,2-bis­­(2-pyridyl­meth­­oxy)benzene-κ4N,O,O′,N′]copper(II) tetra­hydrate

aEngineering Research Center of Pesticides of Heilongjiang Province, Heilongjiang University, Harbin 150080, People's Republic of China, and bCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 1 June 2010; accepted 5 June 2010; online 16 June 2010)

In the title compound, [Cu(CH3COO)2(C18H16N2O2)]·4H2O, the CuII ion is six-coordinated in a Jahn–Teller-distorted octa­hedral geometry environment defined by four O atoms and two N atoms. A chain structure along [100] is built up by inter­molecular O—H⋯O hydrogen bonds involving the uncoordinated water mol­ecules.

Related literature

For the synthesis and general backround to flexible pyridyl-based ligands, see: Liu et al. (2010a[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559-1568.],b[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630-632.]). For a related structure, see: Zhang et al. (2010[Zhang, S., Wang, Y.-J., Ma, D.-S., Liu, Y. & Gao, J.-S. (2010). Acta Cryst. E66, m701.])

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3O2)2(C18H16N2O2)]·4H2O

  • Mr = 545.02

  • Triclinic, [P \overline 1]

  • a = 8.0192 (16) Å

  • b = 11.291 (2) Å

  • c = 14.117 (3) Å

  • α = 102.97 (3)°

  • β = 92.69 (3)°

  • γ = 93.70 (3)°

  • V = 1240.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 291 K

  • 0.37 × 0.15 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.726, Tmax = 0.880

  • 12216 measured reflections

  • 5621 independent reflections

  • 4677 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.169

  • S = 1.05

  • 5621 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H67⋯O6i 0.85 2.40 3.072 (6) 137
O10—H66⋯O9 0.85 2.07 2.913 (6) 169
O9—H64⋯O8ii 0.85 2.26 2.955 (6) 139
O9—H65⋯O8 0.85 2.09 2.828 (6) 145
O8—H63⋯O7iii 0.85 2.06 2.874 (5) 162
O8—H62⋯O7 0.85 1.94 2.784 (5) 176
O7—H61⋯O6iv 0.85 1.91 2.755 (4) 177
O7—H60⋯O4 0.85 1.94 2.784 (5) 172
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Heterocyclic ligands coordinated with transition metal ions can form a variety of topology structures, including macrocycles, polyhedra and linear and helical polymers. Our group has report three kinds of flexible pyridyl-based ligands in previous reports (Liu et al. 20010a; Liu et al. 20010b). As a part of our continuing work for bipyridyl aromatic ligands, we report the crystal structure of the title compound here, and its analogous monohydrate compound also has been reported by our group (Zhang et al. 20010).

1,2-Bis(pyridin-2-ylmethoxy)benzene molecule act as a chelating ligand to coordinate with CuII ion forming a discrete strucutre. Two acetate counter ions also coordinate to the center CuII ion, resulting the CuII ion is six-coordinated in quadrangular bipyramid geometry (Figure 1, Table 1).

A one-dimensional chain structure along [100] direction is built up by intermolecular hydrogen bonds involving the uncoordinated water molecules (Figure 2, Table 2).

Related literature top

For the synthesis and general backround to flexible pyridyl-based ligands, see: Liu et al. (2010a,b). For a related structure, see: Zhang et al. (2010)

Experimental top

The 1,2-Bis(pyridin-2-ylmethoxy)benzene was synthesized by the reaction of ο-dihydroxybenzene and 2-chloromethylpyridine hydrochloride under nitrogen atmosphere and alkaline condition (Liu et al., 2010a). Title ligand (0.58 g, 2 mmol) and Cu(CH3COO)2.H2O (0.40 g, 2 mmol) were dissolved in 15 ml e thanol, and then the mixture keep stirring for 30 minute. The resulting solution was filtered, and the filtrate was allowed to stand in a desiccator at room temperature for several days. Bule needle crystals were obtained.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methene C), C—H = 0.98 Å (methyl C), and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view, showing the one-dimensional hydrogen bonding structure along [100] direction. Dashed lines indicate the hydrogen bonds, no involving H atoms have been omitted.
Bis(acetato-κO)[1,2-bis(2-pyridylmethoxy)benzene- κ4N,O,O',N']copper(II) tetrahydrate top
Crystal data top
[Cu(C2H3O2)2(C18H16N2O2)]·4H2OZ = 2
Mr = 545.02F(000) = 568
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0192 (16) ÅCell parameters from 10671 reflections
b = 11.291 (2) Åθ = 3.0–27.5°
c = 14.117 (3) ŵ = 0.94 mm1
α = 102.97 (3)°T = 291 K
β = 92.69 (3)°Block, blue
γ = 93.70 (3)°0.37 × 0.15 × 0.14 mm
V = 1240.5 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5621 independent reflections
Radiation source: fine-focus sealed tube4677 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 109
Tmin = 0.726, Tmax = 0.880k = 1414
12216 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0738P)2 + 2.5027P]
where P = (Fo2 + 2Fc2)/3
5621 reflections(Δ/σ)max = 0.001
318 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu(C2H3O2)2(C18H16N2O2)]·4H2Oγ = 93.70 (3)°
Mr = 545.02V = 1240.5 (4) Å3
Triclinic, P1Z = 2
a = 8.0192 (16) ÅMo Kα radiation
b = 11.291 (2) ŵ = 0.94 mm1
c = 14.117 (3) ÅT = 291 K
α = 102.97 (3)°0.37 × 0.15 × 0.14 mm
β = 92.69 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5621 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4677 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.880Rint = 0.043
12216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.05Δρmax = 1.14 e Å3
5621 reflectionsΔρmin = 0.44 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6440 (5)0.9469 (4)0.1729 (3)0.0424 (9)
H10.65470.97540.24020.051*
C20.7766 (5)0.9716 (4)0.1190 (4)0.0486 (10)
H20.87481.01440.14960.058*
C30.7601 (6)0.9315 (4)0.0192 (4)0.0509 (11)
H30.84600.94810.01900.061*
C40.6143 (5)0.8665 (4)0.0229 (3)0.0452 (9)
H40.60070.83820.09010.054*
C50.4872 (5)0.8432 (3)0.0357 (3)0.0340 (7)
C60.3333 (5)0.7660 (4)0.0113 (3)0.0444 (9)
H6A0.30420.78450.07360.053*
H6B0.35430.68050.02260.053*
C70.0550 (5)0.7147 (3)0.0236 (3)0.0374 (8)
C80.0090 (6)0.6517 (4)0.0710 (3)0.0475 (10)
H80.07750.65760.12130.057*
C90.1418 (6)0.5795 (4)0.0894 (4)0.0554 (12)
H90.17330.53550.15240.066*
C100.2436 (6)0.5729 (4)0.0153 (4)0.0566 (12)
H100.34440.52510.02860.068*
C110.1981 (5)0.6369 (4)0.0798 (4)0.0491 (10)
H110.26840.63310.12980.059*
C120.0462 (5)0.7062 (4)0.0988 (3)0.0393 (8)
C130.0439 (6)0.7318 (5)0.2704 (3)0.0531 (11)
H130.12950.67140.26810.064*
C140.0544 (5)0.8017 (4)0.3605 (3)0.0410 (9)
C150.0073 (7)0.8020 (6)0.4506 (4)0.0633 (14)
H150.10910.75960.45460.076*
C160.0828 (8)0.8653 (7)0.5345 (4)0.0775 (18)
H160.04350.86520.59550.093*
C170.2324 (6)0.9287 (6)0.5260 (3)0.0640 (14)
H170.29470.97400.58090.077*
C180.2869 (5)0.9233 (4)0.4345 (3)0.0466 (10)
H180.38920.96410.42890.056*
C190.4783 (5)0.6757 (4)0.2747 (3)0.0357 (8)
C200.5151 (6)0.5454 (4)0.2706 (4)0.0516 (11)
H20A0.62640.54350.29810.077*
H20B0.50620.50030.20400.077*
H20C0.43600.50960.30700.077*
C210.2987 (5)1.1144 (4)0.2719 (3)0.0382 (8)
C220.2136 (7)1.2277 (4)0.2681 (4)0.0553 (11)
H22A0.16091.25540.32800.083*
H22B0.13041.21030.21470.083*
H22C0.29481.28990.25930.083*
Cu10.31166 (5)0.85895 (4)0.22267 (3)0.02996 (15)
N10.5010 (4)0.8839 (3)0.1325 (2)0.0337 (6)
N20.2005 (4)0.8624 (3)0.3531 (2)0.0362 (7)
O10.2007 (3)0.7897 (3)0.0502 (2)0.0424 (6)
O20.0142 (3)0.7724 (3)0.1897 (2)0.0425 (6)
O30.3666 (3)0.6916 (2)0.2120 (2)0.0389 (6)
O40.5540 (4)0.7602 (3)0.3366 (2)0.0463 (7)
O50.2292 (3)1.0156 (2)0.2193 (2)0.0397 (6)
O60.4298 (4)1.1202 (3)0.3240 (2)0.0528 (8)
O70.5369 (4)0.6904 (3)0.5132 (2)0.0563 (8)
H600.54920.71680.46190.084*
H610.54360.74940.56290.084*
O80.7329 (4)0.4974 (4)0.5198 (3)0.0690 (10)
H620.67660.55760.51640.103*
H630.66880.43370.51660.103*
O90.9449 (5)0.4636 (4)0.3630 (3)0.0803 (12)
H641.04780.48880.37030.120*
H650.91110.45320.41690.120*
O100.7313 (7)0.2533 (5)0.2556 (3)0.1047 (17)
H660.80150.31310.28050.157*
H670.64360.25850.28730.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0347 (19)0.047 (2)0.043 (2)0.0025 (17)0.0035 (16)0.0075 (17)
C20.035 (2)0.044 (2)0.066 (3)0.0034 (18)0.0084 (19)0.011 (2)
C30.045 (2)0.052 (3)0.062 (3)0.005 (2)0.023 (2)0.022 (2)
C40.049 (2)0.049 (2)0.041 (2)0.0062 (19)0.0137 (18)0.0161 (18)
C50.0377 (18)0.0326 (17)0.0351 (18)0.0057 (15)0.0077 (15)0.0129 (14)
C60.046 (2)0.052 (2)0.0335 (19)0.0015 (19)0.0022 (16)0.0075 (17)
C70.0344 (18)0.0339 (18)0.042 (2)0.0034 (15)0.0082 (15)0.0077 (15)
C80.047 (2)0.046 (2)0.045 (2)0.0072 (19)0.0079 (18)0.0032 (18)
C90.054 (3)0.044 (2)0.061 (3)0.002 (2)0.023 (2)0.002 (2)
C100.049 (2)0.043 (2)0.074 (3)0.011 (2)0.024 (2)0.014 (2)
C110.041 (2)0.048 (2)0.059 (3)0.0042 (19)0.0073 (19)0.019 (2)
C120.0365 (19)0.0387 (19)0.043 (2)0.0022 (16)0.0097 (16)0.0133 (16)
C130.042 (2)0.072 (3)0.045 (2)0.017 (2)0.0033 (18)0.017 (2)
C140.0379 (19)0.049 (2)0.040 (2)0.0039 (17)0.0098 (16)0.0166 (17)
C150.052 (3)0.089 (4)0.053 (3)0.008 (3)0.019 (2)0.025 (3)
C160.071 (3)0.126 (6)0.038 (3)0.004 (4)0.015 (2)0.027 (3)
C170.056 (3)0.106 (4)0.029 (2)0.006 (3)0.0026 (19)0.013 (2)
C180.039 (2)0.067 (3)0.035 (2)0.001 (2)0.0006 (16)0.0138 (19)
C190.0317 (17)0.0396 (19)0.0384 (19)0.0005 (15)0.0050 (15)0.0149 (15)
C200.057 (3)0.043 (2)0.058 (3)0.004 (2)0.005 (2)0.0181 (19)
C210.045 (2)0.0383 (19)0.0320 (18)0.0038 (17)0.0093 (16)0.0088 (15)
C220.071 (3)0.039 (2)0.056 (3)0.012 (2)0.004 (2)0.0091 (19)
Cu10.0289 (2)0.0340 (2)0.0271 (2)0.00067 (17)0.00117 (15)0.00810 (16)
N10.0333 (15)0.0363 (16)0.0333 (15)0.0024 (13)0.0064 (12)0.0110 (12)
N20.0317 (15)0.0482 (18)0.0315 (15)0.0077 (14)0.0041 (12)0.0134 (13)
O10.0344 (13)0.0516 (16)0.0367 (14)0.0029 (12)0.0009 (11)0.0033 (12)
O20.0395 (14)0.0478 (16)0.0391 (15)0.0092 (13)0.0037 (11)0.0121 (12)
O30.0397 (14)0.0387 (14)0.0383 (14)0.0009 (12)0.0009 (11)0.0102 (11)
O40.0382 (14)0.0456 (16)0.0517 (17)0.0044 (13)0.0063 (12)0.0082 (13)
O50.0429 (15)0.0357 (14)0.0405 (14)0.0025 (12)0.0037 (11)0.0084 (11)
O60.0521 (18)0.0500 (18)0.0505 (18)0.0040 (15)0.0066 (14)0.0011 (14)
O70.074 (2)0.0462 (17)0.0457 (17)0.0013 (16)0.0037 (15)0.0061 (13)
O80.0480 (19)0.069 (2)0.088 (3)0.0019 (17)0.0032 (18)0.014 (2)
O90.073 (3)0.088 (3)0.075 (3)0.006 (2)0.002 (2)0.009 (2)
O100.126 (4)0.099 (4)0.074 (3)0.028 (3)0.023 (3)0.006 (3)
Geometric parameters (Å, º) top
C1—N11.341 (5)C16—C171.382 (8)
C1—C21.386 (6)C16—H160.9300
C1—H10.9300C17—C181.373 (6)
C2—C31.376 (7)C17—H170.9300
C2—H20.9300C18—N21.335 (5)
C3—C41.374 (7)C18—H180.9300
C3—H30.9300C19—O41.242 (5)
C4—C51.390 (5)C19—O31.279 (5)
C4—H40.9300C19—C201.508 (6)
C5—N11.337 (5)C20—H20A0.9600
C5—C61.499 (6)C20—H20B0.9600
C6—O11.406 (5)C20—H20C0.9600
C6—H6A0.9700C21—O61.245 (5)
C6—H6B0.9700C21—O51.271 (5)
C7—C121.382 (6)C21—C221.498 (6)
C7—O11.382 (5)C22—H22A0.9600
C7—C81.385 (6)C22—H22B0.9600
C8—C91.394 (6)C22—H22C0.9600
C8—H80.9300Cu1—O51.937 (3)
C9—C101.369 (8)Cu1—O31.942 (3)
C9—H90.9300Cu1—N12.072 (3)
C10—C111.394 (7)Cu1—N22.076 (3)
C10—H100.9300Cu1—O12.486 (3)
C11—C121.385 (6)Cu1—O22.501 (3)
C11—H110.9300O7—H600.8495
C12—O21.381 (5)O7—H610.8496
C13—O21.408 (5)O8—H620.8487
C13—C141.495 (6)O8—H630.8477
C13—H130.9300O9—H640.8487
C14—N21.339 (5)O9—H650.8493
C14—C151.386 (6)O10—H660.8500
C15—C161.382 (8)O10—H670.8500
C15—H150.9300
N1—C1—C2123.0 (4)N2—C18—C17123.4 (4)
N1—C1—H1118.5N2—C18—H18118.3
C2—C1—H1118.5C17—C18—H18118.3
C3—C2—C1118.7 (4)O4—C19—O3123.7 (4)
C3—C2—H2120.7O4—C19—C20120.3 (4)
C1—C2—H2120.7O3—C19—C20116.0 (3)
C4—C3—C2118.8 (4)C19—C20—H20A109.5
C4—C3—H3120.6C19—C20—H20B109.5
C2—C3—H3120.6H20A—C20—H20B109.5
C3—C4—C5119.6 (4)C19—C20—H20C109.5
C3—C4—H4120.2H20A—C20—H20C109.5
C5—C4—H4120.2H20B—C20—H20C109.5
N1—C5—C4122.0 (4)O6—C21—O5123.6 (4)
N1—C5—C6119.3 (3)O6—C21—C22120.3 (4)
C4—C5—C6118.7 (4)O5—C21—C22116.1 (4)
O1—C6—C5109.2 (3)C21—C22—H22A109.5
O1—C6—H6A109.8C21—C22—H22B109.5
C5—C6—H6A109.8H22A—C22—H22B109.5
O1—C6—H6B109.8C21—C22—H22C109.5
C5—C6—H6B109.8H22A—C22—H22C109.5
H6A—C6—H6B108.3H22B—C22—H22C109.5
C12—C7—O1115.3 (3)O5—Cu1—O3171.42 (11)
C12—C7—C8120.8 (4)O5—Cu1—N191.93 (12)
O1—C7—C8123.9 (4)O3—Cu1—N189.79 (12)
C7—C8—C9118.9 (5)O5—Cu1—N290.02 (13)
C7—C8—H8120.5O3—Cu1—N291.66 (13)
C9—C8—H8120.5N1—Cu1—N2157.12 (13)
C10—C9—C8120.3 (4)O5—Cu1—O186.78 (11)
C10—C9—H9119.8O3—Cu1—O185.82 (11)
C8—C9—H9119.8N1—Cu1—O171.06 (11)
C9—C10—C11120.9 (4)N2—Cu1—O1131.82 (11)
C9—C10—H10119.6O5—Cu1—O286.96 (11)
C11—C10—H10119.6O3—Cu1—O285.71 (11)
C12—C11—C10118.9 (5)N1—Cu1—O2132.86 (11)
C12—C11—H11120.6N2—Cu1—O270.01 (11)
C10—C11—H11120.6O1—Cu1—O261.82 (10)
O2—C12—C7115.2 (3)C5—N1—C1118.0 (3)
O2—C12—C11124.6 (4)C5—N1—Cu1123.7 (2)
C7—C12—C11120.2 (4)C1—N1—Cu1118.3 (3)
O2—C13—C14108.9 (3)C18—N2—C14118.7 (3)
O2—C13—H13125.6C18—N2—Cu1117.0 (3)
C14—C13—H13125.6C14—N2—Cu1124.2 (3)
N2—C14—C15121.0 (4)C7—O1—C6116.5 (3)
N2—C14—C13119.8 (3)C7—O1—Cu1122.2 (2)
C15—C14—C13119.2 (4)C6—O1—Cu1110.1 (2)
C16—C15—C14119.9 (5)C12—O2—C13116.7 (3)
C16—C15—H15120.0C12—O2—Cu1121.9 (2)
C14—C15—H15120.0C13—O2—Cu1110.8 (2)
C15—C16—C17118.6 (5)C19—O3—Cu1115.5 (2)
C15—C16—H16120.7C21—O5—Cu1121.8 (3)
C17—C16—H16120.7H60—O7—H61110.2
C18—C17—C16118.4 (5)H62—O8—H63110.9
C18—C17—H17120.8H64—O9—H65109.5
C16—C17—H17120.8H66—O10—H67109.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H67···O6i0.852.403.072 (6)137
O10—H66···O90.852.072.913 (6)169
O9—H64···O8ii0.852.262.955 (6)139
O9—H65···O80.852.092.828 (6)145
O8—H63···O7iii0.852.062.874 (5)162
O8—H62···O70.851.942.784 (5)176
O7—H61···O6iv0.851.912.755 (4)177
O7—H60···O40.851.942.784 (5)172
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O2)2(C18H16N2O2)]·4H2O
Mr545.02
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.0192 (16), 11.291 (2), 14.117 (3)
α, β, γ (°)102.97 (3), 92.69 (3), 93.70 (3)
V3)1240.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.37 × 0.15 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.726, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
12216, 5621, 4677
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.169, 1.05
No. of reflections5621
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.44

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H67···O6i0.852.403.072 (6)136.8
O10—H66···O90.852.072.913 (6)169.4
O9—H64···O8ii0.852.262.955 (6)138.8
O9—H65···O80.852.092.828 (6)145.1
O8—H63···O7iii0.852.062.874 (5)161.6
O8—H62···O70.851.942.784 (5)176.2
O7—H61···O6iv0.851.912.755 (4)177.0
O7—H60···O40.851.942.784 (5)172.3
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the Special Funds for the Research of Scientific and Technological Innovative Talents of Harbin Municipal Science and Technology Bureau (2006RFQXG093, 2009RFXXG027), the Science and Technology Planning Project of Heilongjiang Province (GZ08A401) and Heilongjiang University for supporting this study.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559–1568.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630–632.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S., Wang, Y.-J., Ma, D.-S., Liu, Y. & Gao, J.-S. (2010). Acta Cryst. E66, m701.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds