metal-organic compounds
(5,15-Dianthracen-9-yl-10,20-dihexylporphyrinato)nickel(II): a planar nickel(II) porphyrin
aSFI Tetrapyrrole Laboratory, School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
*Correspondence e-mail: sengem@tcd.ie
The title compound, [Ni(C60H52N4)], is an example of a meso tetrasubstituted nickel(II) porphyrin with both meso aryl and alkyl residues. The molecule exhibits a planar macrocycle with an average deviation of the 24 macrocycle atoms from their least-squares plane (Δ24) of 0.01 Å and an average Ni—N bond length of 1.960 (2) Å. The NiII atom lies on a center of inversion. The structure presents a rare example for a planar nickel(II) porphyrin, as meso-substituted nickel(II) with either only meso-aryl or with meso-alkyl residues typically exhibit a ruffled conformation.
Related literature
For the conformation of ). For with mixed meso substituents, see: Senge et al. (2010). For Ni(II) porphyrin structures, see: Fleischer et al. (1964); Gallucci et al. (1982); Hoard (1973); Lee & Scheidt (1987); Senge et al. (1999, 2000) and Runge et al. (1999). For anthracenyl see: Volz & Schäffer (1985); Davis et al. (2008); Sooambar et al. (2009). For the handling of the crystals, see: Hope (1994).
see: Senge (2006Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810021434/ng2783sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810021434/ng2783Isup2.hkl
The compound was prepared via metallation of the respective free base porphyrin and crystallized via liquid diffusion of methanol into a solution of the porphyrin in methylene chloride. Crystals were handled as described by Hope (1994).
Hydrogen atoms were located in difference maps and refined using a standard riding model.
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. : View of the molecular structure of I in the crystals. Thermal ellipsoids are drawn for 50% occupancy. |
[Ni(C60H52N4)] | Z = 1 |
Mr = 887.77 | F(000) = 468 |
Triclinic, P1 | Dx = 1.329 Mg m−3 |
Hall symbol: -P 1 | Melting point: n/d K |
a = 7.797 (3) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 9.387 (3) Å | Cell parameters from 3864 reflections |
c = 15.285 (5) Å | θ = 2.4–31.2° |
α = 97.246 (6)° | µ = 0.48 mm−1 |
β = 91.222 (4)° | T = 118 K |
γ = 91.402 (6)° | Prism, red |
V = 1109.1 (7) Å3 | 0.50 × 0.20 × 0.05 mm |
Rigaku Saturn724 diffractometer | 3233 reflections with I > 2σ(I) |
Radiation source: Sealed Tube | Rint = 0.070 |
Graphite Monochromator monochromator | θmax = 25.0°, θmin = 3.0° |
Detector resolution: 28.5714 pixels mm-1 | h = −9→9 |
dtprofit.ref scans | k = −11→11 |
17330 measured reflections | l = −18→18 |
3875 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0371P)2] where P = (Fo2 + 2Fc2)/3 |
3875 reflections | (Δ/σ)max < 0.001 |
296 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
0 constraints |
[Ni(C60H52N4)] | γ = 91.402 (6)° |
Mr = 887.77 | V = 1109.1 (7) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.797 (3) Å | Mo Kα radiation |
b = 9.387 (3) Å | µ = 0.48 mm−1 |
c = 15.285 (5) Å | T = 118 K |
α = 97.246 (6)° | 0.50 × 0.20 × 0.05 mm |
β = 91.222 (4)° |
Rigaku Saturn724 diffractometer | 3233 reflections with I > 2σ(I) |
17330 measured reflections | Rint = 0.070 |
3875 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.37 e Å−3 |
3875 reflections | Δρmin = −0.40 e Å−3 |
296 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.0000 | 0.5000 | 0.0000 | 0.01798 (12) | |
N21 | 0.1442 (2) | 0.47152 (16) | 0.10290 (10) | 0.0185 (4) | |
N22 | 0.1822 (2) | 0.62389 (16) | −0.03788 (10) | 0.0192 (4) | |
C5 | −0.0499 (3) | 0.31349 (19) | 0.17545 (13) | 0.0185 (4) | |
C6 | 0.1022 (3) | 0.3901 (2) | 0.16960 (13) | 0.0198 (5) | |
C7 | 0.2375 (3) | 0.3969 (2) | 0.23403 (13) | 0.0247 (5) | |
H7A | 0.2383 | 0.3500 | 0.2856 | 0.030* | |
C8 | 0.3643 (3) | 0.4817 (2) | 0.20886 (14) | 0.0243 (5) | |
H8A | 0.4707 | 0.5059 | 0.2391 | 0.029* | |
C9 | 0.3069 (3) | 0.5284 (2) | 0.12716 (13) | 0.0194 (5) | |
C10 | 0.4031 (3) | 0.6194 (2) | 0.08102 (13) | 0.0204 (5) | |
C11 | 0.3407 (3) | 0.6617 (2) | 0.00254 (13) | 0.0197 (5) | |
C12 | 0.4362 (3) | 0.7542 (2) | −0.04785 (14) | 0.0244 (5) | |
H12A | 0.5476 | 0.7949 | −0.0337 | 0.029* | |
C13 | 0.3384 (3) | 0.7725 (2) | −0.11872 (14) | 0.0248 (5) | |
H13A | 0.3677 | 0.8283 | −0.1642 | 0.030* | |
C14 | 0.1820 (3) | 0.69232 (19) | −0.11298 (13) | 0.0190 (5) | |
C5A | −0.0738 (3) | 0.2335 (2) | 0.25355 (13) | 0.0205 (5) | |
C5B | −0.0381 (3) | 0.0855 (2) | 0.24777 (14) | 0.0230 (5) | |
C5C | 0.0207 (3) | 0.0055 (2) | 0.16833 (15) | 0.0263 (5) | |
H5CA | 0.0405 | 0.0534 | 0.1181 | 0.032* | |
C5D | 0.0488 (3) | −0.1376 (2) | 0.16363 (16) | 0.0334 (6) | |
H5DA | 0.0880 | −0.1884 | 0.1104 | 0.040* | |
C5E | 0.0197 (3) | −0.2119 (2) | 0.23800 (17) | 0.0360 (6) | |
H5EA | 0.0382 | −0.3122 | 0.2338 | 0.043* | |
C5F | −0.0339 (3) | −0.1403 (2) | 0.31441 (16) | 0.0321 (6) | |
H5FA | −0.0517 | −0.1913 | 0.3635 | 0.038* | |
C5G | −0.0645 (3) | 0.0104 (2) | 0.32312 (14) | 0.0255 (5) | |
C5H | −0.1190 (3) | 0.0864 (2) | 0.40177 (14) | 0.0276 (5) | |
H5HA | −0.1338 | 0.0367 | 0.4516 | 0.033* | |
C5I | −0.1523 (3) | 0.2321 (2) | 0.40970 (13) | 0.0230 (5) | |
C5J | −0.2098 (3) | 0.3101 (2) | 0.48906 (14) | 0.0318 (6) | |
H5JA | −0.2196 | 0.2628 | 0.5402 | 0.038* | |
C5K | −0.2508 (3) | 0.4502 (2) | 0.49355 (15) | 0.0393 (6) | |
H5KA | −0.2877 | 0.5003 | 0.5475 | 0.047* | |
C5L | −0.2383 (3) | 0.5230 (2) | 0.41624 (15) | 0.0347 (6) | |
H5LA | −0.2719 | 0.6200 | 0.4186 | 0.042* | |
C5M | −0.1797 (3) | 0.4549 (2) | 0.34139 (15) | 0.0298 (5) | |
H5MA | −0.1677 | 0.5061 | 0.2920 | 0.036* | |
C5N | −0.1344 (3) | 0.3070 (2) | 0.33320 (13) | 0.0230 (5) | |
C10A | 0.5771 (3) | 0.6803 (2) | 0.11646 (13) | 0.0235 (5) | |
H10A | 0.6577 | 0.6781 | 0.0671 | 0.028* | |
H10B | 0.6232 | 0.6189 | 0.1591 | 0.028* | |
C10B | 0.5667 (3) | 0.8359 (2) | 0.16236 (13) | 0.0265 (5) | |
H10C | 0.6835 | 0.8805 | 0.1670 | 0.032* | |
H10D | 0.4955 | 0.8913 | 0.1250 | 0.032* | |
C10C | 0.4915 (3) | 0.8477 (2) | 0.25444 (14) | 0.0279 (5) | |
H10E | 0.5718 | 0.8051 | 0.2943 | 0.033* | |
H10F | 0.3823 | 0.7909 | 0.2514 | 0.033* | |
C10D | 0.4574 (3) | 1.0030 (2) | 0.29382 (14) | 0.0287 (5) | |
H10G | 0.5637 | 1.0622 | 0.2916 | 0.034* | |
H10H | 0.3681 | 1.0425 | 0.2574 | 0.034* | |
C10E | 0.4000 (3) | 1.0138 (2) | 0.38747 (15) | 0.0356 (6) | |
H10I | 0.4938 | 0.9824 | 0.4246 | 0.043* | |
H10J | 0.3004 | 0.9473 | 0.3904 | 0.043* | |
C10F | 0.3500 (3) | 1.1641 (2) | 0.42523 (14) | 0.0316 (6) | |
H10K | 0.3292 | 1.1666 | 0.4884 | 0.047* | |
H10L | 0.2453 | 1.1900 | 0.3950 | 0.047* | |
H10M | 0.4430 | 1.2326 | 0.4166 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.0227 (2) | 0.0162 (2) | 0.0154 (2) | −0.00037 (16) | 0.00200 (15) | 0.00351 (15) |
N21 | 0.0227 (10) | 0.0156 (8) | 0.0174 (9) | −0.0013 (7) | 0.0034 (7) | 0.0021 (7) |
N22 | 0.0240 (10) | 0.0184 (9) | 0.0155 (9) | 0.0016 (8) | 0.0008 (7) | 0.0030 (7) |
C5 | 0.0243 (12) | 0.0137 (10) | 0.0171 (10) | −0.0003 (9) | 0.0026 (9) | 0.0004 (8) |
C6 | 0.0279 (13) | 0.0145 (10) | 0.0170 (11) | 0.0015 (9) | 0.0004 (9) | 0.0020 (8) |
C7 | 0.0307 (13) | 0.0231 (11) | 0.0212 (11) | −0.0003 (10) | −0.0011 (10) | 0.0069 (9) |
C8 | 0.0244 (12) | 0.0235 (11) | 0.0252 (12) | −0.0005 (9) | −0.0043 (9) | 0.0048 (9) |
C9 | 0.0219 (12) | 0.0161 (10) | 0.0198 (11) | 0.0005 (9) | 0.0000 (9) | 0.0005 (9) |
C10 | 0.0215 (12) | 0.0177 (10) | 0.0211 (11) | 0.0032 (9) | 0.0025 (9) | −0.0015 (9) |
C11 | 0.0208 (12) | 0.0171 (10) | 0.0204 (11) | −0.0007 (9) | 0.0021 (9) | −0.0005 (9) |
C12 | 0.0243 (12) | 0.0245 (11) | 0.0246 (12) | −0.0043 (9) | 0.0021 (9) | 0.0047 (9) |
C13 | 0.0282 (13) | 0.0248 (11) | 0.0221 (11) | −0.0045 (10) | 0.0024 (9) | 0.0061 (9) |
C14 | 0.0249 (12) | 0.0138 (10) | 0.0184 (10) | −0.0005 (9) | 0.0027 (9) | 0.0028 (8) |
C5A | 0.0206 (12) | 0.0199 (11) | 0.0209 (11) | −0.0033 (9) | −0.0013 (9) | 0.0036 (9) |
C5B | 0.0215 (12) | 0.0224 (11) | 0.0254 (12) | −0.0028 (9) | −0.0011 (9) | 0.0050 (9) |
C5C | 0.0235 (12) | 0.0243 (12) | 0.0312 (13) | −0.0006 (10) | 0.0029 (10) | 0.0029 (10) |
C5D | 0.0297 (14) | 0.0295 (13) | 0.0400 (14) | 0.0025 (11) | 0.0049 (11) | 0.0001 (11) |
C5E | 0.0338 (15) | 0.0204 (12) | 0.0548 (17) | 0.0030 (10) | 0.0046 (12) | 0.0073 (11) |
C5F | 0.0275 (14) | 0.0275 (12) | 0.0445 (15) | 0.0023 (10) | 0.0012 (11) | 0.0166 (11) |
C5G | 0.0227 (12) | 0.0242 (12) | 0.0308 (12) | −0.0018 (9) | −0.0011 (10) | 0.0088 (10) |
C5H | 0.0259 (13) | 0.0333 (13) | 0.0259 (12) | −0.0043 (10) | −0.0008 (10) | 0.0135 (10) |
C5I | 0.0234 (12) | 0.0244 (11) | 0.0218 (11) | −0.0032 (9) | 0.0020 (9) | 0.0056 (9) |
C5J | 0.0353 (14) | 0.0375 (14) | 0.0232 (12) | −0.0075 (11) | 0.0003 (10) | 0.0075 (10) |
C5K | 0.0509 (17) | 0.0376 (14) | 0.0268 (13) | −0.0036 (12) | 0.0092 (12) | −0.0069 (11) |
C5L | 0.0490 (17) | 0.0188 (11) | 0.0359 (14) | 0.0024 (11) | 0.0132 (12) | −0.0006 (10) |
C5M | 0.0370 (14) | 0.0257 (12) | 0.0282 (13) | −0.0016 (10) | 0.0020 (10) | 0.0090 (10) |
C5N | 0.0238 (12) | 0.0220 (11) | 0.0234 (11) | −0.0015 (9) | 0.0003 (9) | 0.0035 (9) |
C10A | 0.0212 (12) | 0.0290 (12) | 0.0209 (11) | −0.0013 (9) | 0.0002 (9) | 0.0059 (9) |
C10B | 0.0222 (12) | 0.0306 (12) | 0.0262 (12) | −0.0058 (10) | −0.0007 (10) | 0.0035 (10) |
C10C | 0.0286 (13) | 0.0284 (12) | 0.0269 (12) | −0.0013 (10) | −0.0015 (10) | 0.0048 (10) |
C10D | 0.0265 (13) | 0.0316 (12) | 0.0282 (12) | −0.0031 (10) | −0.0030 (10) | 0.0057 (10) |
C10E | 0.0428 (16) | 0.0354 (13) | 0.0285 (13) | 0.0020 (11) | 0.0001 (11) | 0.0033 (11) |
C10F | 0.0368 (15) | 0.0288 (12) | 0.0289 (13) | 0.0039 (11) | 0.0004 (11) | 0.0019 (10) |
Ni—N22 | 1.9570 (17) | C5E—H5EA | 0.9500 |
Ni—N22i | 1.9570 (17) | C5F—C5G | 1.430 (3) |
Ni—N21i | 1.9632 (17) | C5F—H5FA | 0.9500 |
Ni—N21 | 1.9632 (17) | C5G—C5H | 1.399 (3) |
N21—C6 | 1.389 (2) | C5H—C5I | 1.389 (3) |
N21—C9 | 1.389 (3) | C5H—H5HA | 0.9500 |
N22—C14 | 1.384 (2) | C5I—C5J | 1.423 (3) |
N22—C11 | 1.388 (3) | C5I—C5N | 1.446 (3) |
C5—C6 | 1.382 (3) | C5J—C5K | 1.354 (3) |
C5—C14i | 1.385 (3) | C5J—H5JA | 0.9500 |
C5—C5A | 1.501 (3) | C5K—C5L | 1.442 (3) |
C6—C7 | 1.423 (3) | C5K—H5KA | 0.9500 |
C7—C8 | 1.346 (3) | C5L—C5M | 1.333 (3) |
C7—H7A | 0.9500 | C5L—H5LA | 0.9500 |
C8—C9 | 1.441 (3) | C5M—C5N | 1.433 (3) |
C8—H8A | 0.9500 | C5M—H5MA | 0.9500 |
C9—C10 | 1.390 (3) | C10A—C10B | 1.544 (3) |
C10—C11 | 1.392 (3) | C10A—H10A | 0.9900 |
C10—C10A | 1.521 (3) | C10A—H10B | 0.9900 |
C11—C12 | 1.436 (3) | C10B—C10C | 1.529 (3) |
C12—C13 | 1.343 (3) | C10B—H10C | 0.9900 |
C12—H12A | 0.9500 | C10B—H10D | 0.9900 |
C13—C14 | 1.427 (3) | C10C—C10D | 1.538 (3) |
C13—H13A | 0.9500 | C10C—H10E | 0.9900 |
C14—C5i | 1.385 (3) | C10C—H10F | 0.9900 |
C5A—C5B | 1.416 (3) | C10D—C10E | 1.501 (3) |
C5A—C5N | 1.417 (3) | C10D—H10G | 0.9900 |
C5B—C5C | 1.435 (3) | C10D—H10H | 0.9900 |
C5B—C5G | 1.440 (3) | C10E—C10F | 1.518 (3) |
C5C—C5D | 1.359 (3) | C10E—H10I | 0.9900 |
C5C—H5CA | 0.9500 | C10E—H10J | 0.9900 |
C5D—C5E | 1.426 (3) | C10F—H10K | 0.9800 |
C5D—H5DA | 0.9500 | C10F—H10L | 0.9800 |
C5E—C5F | 1.352 (3) | C10F—H10M | 0.9800 |
N22—Ni—N22i | 180.00 (8) | C5H—C5G—C5F | 122.4 (2) |
N22—Ni—N21i | 91.02 (7) | C5H—C5G—C5B | 119.23 (19) |
N22i—Ni—N21i | 88.98 (7) | C5F—C5G—C5B | 118.4 (2) |
N22—Ni—N21 | 88.98 (7) | C5I—C5H—C5G | 122.40 (19) |
N22i—Ni—N21 | 91.02 (7) | C5I—C5H—H5HA | 118.8 |
N21i—Ni—N21 | 180.00 (9) | C5G—C5H—H5HA | 118.8 |
C6—N21—C9 | 104.27 (16) | C5H—C5I—C5J | 122.86 (19) |
C6—N21—Ni | 126.74 (14) | C5H—C5I—C5N | 118.78 (19) |
C9—N21—Ni | 128.98 (13) | C5J—C5I—C5N | 118.31 (19) |
C14—N22—C11 | 104.18 (16) | C5K—C5J—C5I | 121.6 (2) |
C14—N22—Ni | 127.19 (14) | C5K—C5J—H5JA | 119.2 |
C11—N22—Ni | 128.63 (13) | C5I—C5J—H5JA | 119.2 |
C6—C5—C14i | 123.17 (18) | C5J—C5K—C5L | 119.8 (2) |
C6—C5—C5A | 118.53 (18) | C5J—C5K—H5KA | 120.1 |
C14i—C5—C5A | 118.30 (18) | C5L—C5K—H5KA | 120.1 |
C5—C6—N21 | 126.01 (18) | C5M—C5L—C5K | 120.3 (2) |
C5—C6—C7 | 123.21 (18) | C5M—C5L—H5LA | 119.8 |
N21—C6—C7 | 110.77 (18) | C5K—C5L—H5LA | 119.8 |
C8—C7—C6 | 107.78 (19) | C5L—C5M—C5N | 122.0 (2) |
C8—C7—H7A | 126.1 | C5L—C5M—H5MA | 119.0 |
C6—C7—H7A | 126.1 | C5N—C5M—H5MA | 119.0 |
C7—C8—C9 | 106.63 (19) | C5A—C5N—C5M | 122.31 (19) |
C7—C8—H8A | 126.7 | C5A—C5N—C5I | 119.88 (18) |
C9—C8—H8A | 126.7 | C5M—C5N—C5I | 117.81 (18) |
N21—C9—C10 | 125.85 (19) | C10—C10A—C10B | 112.21 (17) |
N21—C9—C8 | 110.55 (17) | C10—C10A—H10A | 109.2 |
C10—C9—C8 | 123.6 (2) | C10B—C10A—H10A | 109.2 |
C9—C10—C11 | 121.1 (2) | C10—C10A—H10B | 109.2 |
C9—C10—C10A | 121.00 (19) | C10B—C10A—H10B | 109.2 |
C11—C10—C10A | 117.87 (18) | H10A—C10A—H10B | 107.9 |
N22—C11—C10 | 126.47 (18) | C10C—C10B—C10A | 113.98 (17) |
N22—C11—C12 | 110.47 (18) | C10C—C10B—H10C | 108.8 |
C10—C11—C12 | 123.1 (2) | C10A—C10B—H10C | 108.8 |
C13—C12—C11 | 107.1 (2) | C10C—C10B—H10D | 108.8 |
C13—C12—H12A | 126.4 | C10A—C10B—H10D | 108.8 |
C11—C12—H12A | 126.4 | H10C—C10B—H10D | 107.7 |
C12—C13—C14 | 107.17 (19) | C10B—C10C—C10D | 113.40 (17) |
C12—C13—H13A | 126.4 | C10B—C10C—H10E | 108.9 |
C14—C13—H13A | 126.4 | C10D—C10C—H10E | 108.9 |
N22—C14—C5i | 125.85 (19) | C10B—C10C—H10F | 108.9 |
N22—C14—C13 | 111.04 (18) | C10D—C10C—H10F | 108.9 |
C5i—C14—C13 | 123.11 (18) | H10E—C10C—H10F | 107.7 |
C5B—C5A—C5N | 120.05 (18) | C10E—C10D—C10C | 112.63 (18) |
C5B—C5A—C5 | 120.47 (18) | C10E—C10D—H10G | 109.1 |
C5N—C5A—C5 | 119.47 (17) | C10C—C10D—H10G | 109.1 |
C5A—C5B—C5C | 122.32 (19) | C10E—C10D—H10H | 109.1 |
C5A—C5B—C5G | 119.53 (19) | C10C—C10D—H10H | 109.1 |
C5C—C5B—C5G | 118.13 (18) | H10G—C10D—H10H | 107.8 |
C5D—C5C—C5B | 121.2 (2) | C10D—C10E—C10F | 113.70 (18) |
C5D—C5C—H5CA | 119.4 | C10D—C10E—H10I | 108.8 |
C5B—C5C—H5CA | 119.4 | C10F—C10E—H10I | 108.8 |
C5C—C5D—C5E | 120.5 (2) | C10D—C10E—H10J | 108.8 |
C5C—C5D—H5DA | 119.8 | C10F—C10E—H10J | 108.8 |
C5E—C5D—H5DA | 119.8 | H10I—C10E—H10J | 107.7 |
C5F—C5E—C5D | 120.3 (2) | C10E—C10F—H10K | 109.5 |
C5F—C5E—H5EA | 119.9 | C10E—C10F—H10L | 109.5 |
C5D—C5E—H5EA | 119.9 | H10K—C10F—H10L | 109.5 |
C5E—C5F—C5G | 121.6 (2) | C10E—C10F—H10M | 109.5 |
C5E—C5F—H5FA | 119.2 | H10K—C10F—H10M | 109.5 |
C5G—C5F—H5FA | 119.2 | H10L—C10F—H10M | 109.5 |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C60H52N4)] |
Mr | 887.77 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 118 |
a, b, c (Å) | 7.797 (3), 9.387 (3), 15.285 (5) |
α, β, γ (°) | 97.246 (6), 91.222 (4), 91.402 (6) |
V (Å3) | 1109.1 (7) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.48 |
Crystal size (mm) | 0.50 × 0.20 × 0.05 |
Data collection | |
Diffractometer | Rigaku Saturn724 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17330, 3875, 3233 |
Rint | 0.070 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.087, 1.00 |
No. of reflections | 3875 |
No. of parameters | 296 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.40 |
Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).
Acknowledgements
This work was supported by a grant from Science Foundation Ireland (SFI P.I. 09/IN.1/B2650).
References
Davis, N. K. S., Nicola, K. S., Pawlicki, M. & Anderson, H. L. (2008). Org. Lett. 10, 3945–3947. Web of Science CrossRef PubMed CAS Google Scholar
Fleischer, E. B., Miller, C. K. & Webb, L. E. (1964). J. Am. Chem. Soc. 86, 2342–2348. CSD CrossRef CAS Web of Science Google Scholar
Gallucci, J. C., Swepston, P. N. & Ibers, J. A. (1982). Acta Cryst. B38, 2134–2139. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hoard, J. L. (1973). Ann. N. Y. Acad. Sci. 206, 18–31. CrossRef CAS PubMed Web of Science Google Scholar
Hope, H. (1994). Prog. Inorg. Chem. 41, 1–19. CrossRef CAS Web of Science Google Scholar
Lee, Y. J. & Scheidt, W. R. (1987). Struct. Bonding (Berlin), 64, 1–69. Google Scholar
Rigaku (2008). CrystalClear . Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Runge, S., Senge, M. O. & Ruhlandt-Senge, K. (1999). Z. Naturforsch. Teil B 54, 662–666. CAS Google Scholar
Senge, M. O. (2006). Chem. Commun. pp. 243–256. Web of Science CrossRef Google Scholar
Senge, M. O., Bischoff, I., Nelson, N. Y. & Smith, K. M. (1999). J. Porphyrins Phthalocyanines, 3, 99–116. Web of Science CrossRef CAS Google Scholar
Senge, M. O., Renner, M. W., Kalisch, W. W. & Fajer, J. (2000). J. Chem. Soc. Dalton Trans. pp. 381–385. Web of Science CSD CrossRef Google Scholar
Senge, M. O., Shaker, Y. M., Pintea, M., Ryppa, C., Hatscher, S. S., Ryan, A. & Sergeeva, Y. (2010). Eur. J. Org. Chem. pp. 237–258. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sooambar, C., Troiani, V., Bruno, C., Marcaccio, M., Paolucci, F., Listorti, A., Belbakra, A., Armaroli, N., Magistrato, A., De Zorzi, R., Geremia, S. & Bonifazi, D. (2009). Org. Biomol. Chem. 7, 2402–2413. Web of Science CSD CrossRef PubMed CAS Google Scholar
Volz, H. & Schäffer, H. (1985). Chem. Ztg, 109, 308–309. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In continuation of studies on the conformational flexibility of porphyrins (Senge, 2006) the structure of the title compound was determined as an example for a meso substituted porphyrin with both meso alkyl and meso aryl subsitutents (Senge et al., 2010) and in relation to current synthetic studies on anthracenyl porphyrins (Volz & Schäffer, 1985; Davis et al., 2008; Sooambar et al., 2009).
The structure of (I), is shown in Fig. 1. The molecule exhibits a completely planar macrocycle with an average deviation of the 24 macrocycle atoms from their least-squares-plane (Δ24) of 0.01 Å and an average Ni—N bond length of 1.960 (2) Å. All geometrical parameters are typical for a planar nickel(II) porphyrin (Senge et al., 2000). No individual macrocycle atom was displaced more then 0.015 Å from the mean plane. Likewise, differences in bond angles and lenghts between the meso aryl and meso alkyl quadrants are minimal. The anthracenyl residues are almost orthogonal to the plane of the four nitrogen atoms (96.2°) similarly to the situation found in related zinc(II) systems with meso aryl residues (Sooambar et al., 2009). In the crystal packing there are no close contacts (not shown). The anthracene residues prevent π-stacking of the porphyrins and the hexyl side chains are oriented between neighboring anthracenyl substituents and hinder π-stacking as well.
The structure presents a rare example for a planar nickel(II) porphyrin. Typically, meso substituted nickel(II) porphyrins with only meso aryl residues (Fleischer et al., 1964; Hoard, 1973; Lee & Scheidt, 1987) and those with meso alkyl residues (Senge et al., 1999; Runge et al., 1999) exhibit a ruffled conformation. Only (5,10,15,20-tetramethylporphyrinato)nickel(II) exbihits an almost planar conformation as well (Gallucci et al., 1982).