organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­fluoro­phen­yl)phthalimide

aCollege of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: clshangzhou@yahoo.com.cn

(Received 7 June 2010; accepted 22 June 2010; online 26 June 2010)

In the title compound, C14H7F2NO2, the phthalimide ring system is nearly planar [maximum atomic deviation = 0.028 (1) Å] and it is twisted with respect to the attached benzene ring, making a dihedral angle of 55.70 (6)°. Weak inter­molecular C—H⋯F hydrogen bonds are present in the crystal structure.

Related literature

The title compound is an inter­mediate in the synthesis of organic electro-luminescent materials, see: Han & Kay (2005[Han, K. J. & Kay, K. Y. (2005). J. Korean Chem. Soc. 49, 233-238.]). For the synthesis, see: Valkonen et al. (2007[Valkonen, A., Lahtinen, T. & Rissanen, K. (2007). Acta Cryst. E63, o472-o473.]); Barchin et al. (2002[Barchin, B. M., Cuadro, A. M. & Alvarez-Builla, J. (2002). Synlett, 2, 343-345.]). For a related structure, see: Xu et al. (2006[Xu, D., Shi, Y.-Q., Chen, B., Cheng, Y.-H. & Gao, X. (2006). Acta Cryst. E62, o408-o409.]).

[Scheme 1]

Experimental

Crystal data
  • C14H7F2NO2

  • Mr = 259.21

  • Orthorhombic, P b c a

  • a = 15.101 (3) Å

  • b = 5.8093 (12) Å

  • c = 24.866 (5) Å

  • V = 2181.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 113 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.975, Tmax = 0.990

  • 14468 measured reflections

  • 1920 independent reflections

  • 1780 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.03

  • 1920 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.06 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯F2i 0.95 2.47 3.317 (2) 149
C5—H5⋯F2ii 0.95 2.54 3.321 (2) 139
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a key intermediate in the synthesis of organic electro-luminescent materials. The emission of light by organic molecules exposed to an electric field has been wide investigated in both an academic and industrial context. (Han & Kay, 2005).

The molecular structure of the title compound is illustrated in Fig. 1. In the title compound, the phthalimide ring system is nearly planar [maximum atomic deviation 0.028 (1) Å for N1 atom] and the dihedral angle between the benzene ring and the phthalimide plane is 55.70 (6)°, which is similar to 59.95 (4) ° found in a related compound N-(2-fluorophenyl)phthalimide (Xu et al., 2006). Weak intermolecular C—H···F hydrogen bonding is present in the crystal structure (Table 1).

Related literature top

The title compound is an intermediate in the synthesis of organic electro-luminescent materials, see: Han & Kay (2005). For the synthesis, see: Valkonen et al. (2007); Barchin et al. (2002). For a related structure, see: Xu et al. (2006).

Experimental top

An acetic acid solution of phthalic anhydride (14.8 g, 100 mmol) and 3,4-difluoroaniline (9.91 ml, 100 mmol) was refluxed overnight, and then filtered. The crude product was recrystallized from ethyl acetate.

Refinement top

H atoms were positioned geometrically and refined as riding with C—H = 0.95 Å, and Uiso(H) = 1.2Ueq(C). The (002) and (102) reflections were omitted in the refinement.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
N-(3,4-Difluorophenyl)phthalimide top
Crystal data top
C14H7F2NO2F(000) = 1056
Mr = 259.21Dx = 1.579 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5269 reflections
a = 15.101 (3) Åθ = 1.6–27.9°
b = 5.8093 (12) ŵ = 0.13 mm1
c = 24.866 (5) ÅT = 113 K
V = 2181.4 (8) Å3Prism, colorless
Z = 80.20 × 0.10 × 0.08 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1920 independent reflections
Radiation source: rotating anode1780 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.040
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω and ϕ scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.975, Tmax = 0.990l = 2920
14468 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.7186P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1920 reflectionsΔρmax = 0.34 e Å3
173 parametersΔρmin = 0.06 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.046 (4)
Crystal data top
C14H7F2NO2V = 2181.4 (8) Å3
Mr = 259.21Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.101 (3) ŵ = 0.13 mm1
b = 5.8093 (12) ÅT = 113 K
c = 24.866 (5) Å0.20 × 0.10 × 0.08 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1920 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1780 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.990Rint = 0.040
14468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
1920 reflectionsΔρmin = 0.06 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.18581 (6)0.83152 (17)0.21976 (4)0.0398 (3)
F20.12250 (7)0.45784 (18)0.17125 (4)0.0409 (3)
O10.04193 (7)0.85824 (18)0.40561 (4)0.0289 (3)
O20.19778 (7)0.17995 (18)0.40802 (4)0.0282 (3)
N10.11557 (7)0.5119 (2)0.39257 (5)0.0217 (3)
C10.08090 (9)0.6931 (2)0.42336 (6)0.0221 (4)
C20.10111 (9)0.6332 (3)0.48041 (6)0.0223 (4)
C30.08065 (10)0.7479 (3)0.52755 (6)0.0277 (4)
H30.04990.89050.52710.033*
C40.10706 (10)0.6458 (3)0.57568 (6)0.0315 (4)
H40.09420.72060.60870.038*
C50.15184 (10)0.4367 (3)0.57625 (6)0.0314 (4)
H50.16880.37080.60970.038*
C60.17221 (10)0.3224 (3)0.52856 (6)0.0276 (4)
H60.20280.17940.52870.033*
C70.14620 (9)0.4251 (3)0.48107 (6)0.0225 (4)
C80.15903 (9)0.3464 (2)0.42484 (6)0.0218 (4)
C90.11494 (9)0.5016 (3)0.33528 (6)0.0232 (4)
C100.15100 (9)0.6824 (3)0.30585 (6)0.0251 (4)
H100.17440.81470.32320.030*
C110.15153 (9)0.6626 (3)0.25060 (6)0.0276 (4)
C120.11839 (10)0.4696 (3)0.22544 (6)0.0284 (4)
C130.08237 (10)0.2919 (3)0.25441 (6)0.0297 (4)
H130.05910.16010.23670.036*
C140.08046 (9)0.3082 (3)0.31032 (6)0.0262 (4)
H140.05570.18740.33120.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0481 (6)0.0388 (7)0.0325 (6)0.0077 (5)0.0028 (4)0.0079 (4)
F20.0557 (7)0.0463 (7)0.0206 (5)0.0059 (5)0.0013 (4)0.0034 (4)
O10.0296 (6)0.0255 (6)0.0315 (6)0.0052 (4)0.0016 (4)0.0006 (4)
O20.0294 (6)0.0246 (6)0.0305 (6)0.0059 (4)0.0002 (4)0.0033 (4)
N10.0215 (6)0.0225 (7)0.0211 (7)0.0022 (5)0.0005 (4)0.0009 (5)
C10.0179 (7)0.0223 (8)0.0262 (8)0.0003 (6)0.0012 (5)0.0009 (6)
C20.0189 (7)0.0235 (8)0.0247 (8)0.0018 (6)0.0008 (6)0.0007 (6)
C30.0241 (7)0.0277 (9)0.0313 (8)0.0013 (6)0.0036 (6)0.0033 (7)
C40.0322 (8)0.0381 (10)0.0242 (8)0.0065 (7)0.0071 (6)0.0039 (7)
C50.0334 (8)0.0366 (10)0.0242 (8)0.0064 (7)0.0018 (6)0.0054 (7)
C60.0273 (8)0.0272 (8)0.0282 (8)0.0022 (7)0.0012 (6)0.0048 (6)
C70.0198 (7)0.0217 (8)0.0260 (8)0.0027 (6)0.0018 (6)0.0007 (6)
C80.0188 (7)0.0208 (8)0.0257 (8)0.0012 (5)0.0009 (6)0.0003 (6)
C90.0194 (7)0.0265 (8)0.0236 (8)0.0034 (6)0.0015 (5)0.0016 (6)
C100.0235 (7)0.0249 (8)0.0270 (8)0.0010 (6)0.0021 (6)0.0007 (6)
C110.0254 (7)0.0289 (9)0.0287 (8)0.0021 (6)0.0025 (6)0.0061 (7)
C120.0293 (8)0.0344 (9)0.0217 (8)0.0080 (7)0.0011 (6)0.0024 (6)
C130.0301 (8)0.0289 (9)0.0300 (8)0.0032 (7)0.0042 (6)0.0070 (7)
C140.0248 (7)0.0248 (8)0.0289 (8)0.0006 (6)0.0001 (6)0.0007 (6)
Geometric parameters (Å, º) top
F1—C111.3486 (18)C5—C61.394 (2)
F2—C121.3507 (17)C5—H50.9500
O1—C11.2088 (17)C6—C71.380 (2)
O2—C81.2051 (18)C6—H60.9500
N1—C11.4032 (18)C7—C81.484 (2)
N1—C81.4139 (18)C9—C141.385 (2)
N1—C91.4257 (19)C9—C101.391 (2)
C1—C21.4923 (19)C10—C111.379 (2)
C2—C31.383 (2)C10—H100.9500
C2—C71.388 (2)C11—C121.378 (2)
C3—C41.394 (2)C12—C131.371 (2)
C3—H30.9500C13—C141.394 (2)
C4—C51.390 (3)C13—H130.9500
C4—H40.9500C14—H140.9500
C1—N1—C8111.94 (12)C2—C7—C8108.76 (12)
C1—N1—C9125.04 (12)O2—C8—N1125.03 (13)
C8—N1—C9122.80 (12)O2—C8—C7129.63 (13)
O1—C1—N1125.29 (13)N1—C8—C7105.34 (12)
O1—C1—C2129.18 (13)C14—C9—C10121.58 (15)
N1—C1—C2105.51 (12)C14—C9—N1118.96 (14)
C3—C2—C7121.30 (14)C10—C9—N1119.44 (13)
C3—C2—C1130.35 (14)C11—C10—C9117.63 (14)
C7—C2—C1108.34 (12)C11—C10—H10121.2
C2—C3—C4117.29 (15)C9—C10—H10121.2
C2—C3—H3121.4F1—C11—C10120.55 (14)
C4—C3—H3121.4F1—C11—C12118.25 (14)
C5—C4—C3121.32 (14)C10—C11—C12121.19 (14)
C5—C4—H4119.3F2—C12—C13120.28 (14)
C3—C4—H4119.3F2—C12—C11118.50 (14)
C4—C5—C6121.00 (15)C13—C12—C11121.21 (14)
C4—C5—H5119.5C12—C13—C14118.75 (14)
C6—C5—H5119.5C12—C13—H13120.6
C7—C6—C5117.33 (15)C14—C13—H13120.6
C7—C6—H6121.3C9—C14—C13119.63 (14)
C5—C6—H6121.3C9—C14—H14120.2
C6—C7—C2121.76 (14)C13—C14—H14120.2
C6—C7—C8129.48 (14)
C8—N1—C1—O1178.83 (13)C9—N1—C8—C7178.07 (12)
C9—N1—C1—O14.1 (2)C6—C7—C8—O23.1 (3)
C8—N1—C1—C22.26 (14)C2—C7—C8—O2176.76 (14)
C9—N1—C1—C2177.01 (12)C6—C7—C8—N1177.27 (14)
O1—C1—C2—C30.4 (3)C2—C7—C8—N12.88 (15)
N1—C1—C2—C3178.49 (14)C1—N1—C9—C14127.38 (15)
O1—C1—C2—C7179.19 (14)C8—N1—C9—C1458.42 (17)
N1—C1—C2—C70.34 (15)C1—N1—C9—C1054.38 (18)
C7—C2—C3—C40.1 (2)C8—N1—C9—C10119.82 (15)
C1—C2—C3—C4178.61 (14)C14—C9—C10—C110.1 (2)
C2—C3—C4—C50.2 (2)N1—C9—C10—C11178.06 (12)
C3—C4—C5—C60.3 (2)C9—C10—C11—F1179.79 (12)
C4—C5—C6—C70.0 (2)C9—C10—C11—C120.7 (2)
C5—C6—C7—C20.4 (2)F1—C11—C12—F20.6 (2)
C5—C6—C7—C8179.47 (14)C10—C11—C12—F2178.55 (13)
C3—C2—C7—C60.4 (2)F1—C11—C12—C13179.79 (13)
C1—C2—C7—C6178.56 (13)C10—C11—C12—C131.1 (2)
C3—C2—C7—C8179.47 (13)F2—C12—C13—C14179.01 (13)
C1—C2—C7—C81.58 (16)C11—C12—C13—C140.6 (2)
C1—N1—C8—O2176.48 (13)C10—C9—C14—C130.6 (2)
C9—N1—C8—O21.6 (2)N1—C9—C14—C13177.63 (12)
C1—N1—C8—C73.18 (14)C12—C13—C14—C90.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···F2i0.952.473.317 (2)149
C5—H5···F2ii0.952.543.321 (2)139
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H7F2NO2
Mr259.21
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)15.101 (3), 5.8093 (12), 24.866 (5)
V3)2181.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.975, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
14468, 1920, 1780
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.03
No. of reflections1920
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.06

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···F2i0.952.473.317 (2)149
C5—H5···F2ii0.952.543.321 (2)139
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the Major Research Program of Zhejiang Province (No. 2008 C02007–2) and the Zhejiang Provincial Natural Science Foundation of China (No. Y307128).

References

First citationBarchin, B. M., Cuadro, A. M. & Alvarez-Builla, J. (2002). Synlett, 2, 343–345.  CrossRef Google Scholar
First citationHan, K. J. & Kay, K. Y. (2005). J. Korean Chem. Soc. 49, 233–238.  CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValkonen, A., Lahtinen, T. & Rissanen, K. (2007). Acta Cryst. E63, o472–o473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, D., Shi, Y.-Q., Chen, B., Cheng, Y.-H. & Gao, X. (2006). Acta Cryst. E62, o408–o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds