organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3,4-Tri­fluoro­phen­yl)phthalimide

aCollege of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: clshangzhou@yahoo.com.cn

(Received 7 June 2010; accepted 22 June 2010; online 30 June 2010)

In the title compound, C14H6F3NO2, the benzene ring and the phthalimide ring system make a dihedral angle of 60.12 (7)°. Weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonds are present in the crystal structure.

Related literature

The title compound is a key inter­mediate in the synthesis of organic electro-luminescent materials, see: Han & Kay (2005[Han, K. J. & Kay, K. Y. (2005). J. Korean Chem. Soc. 49, 233-238.]). For the synthesis, see: Valkonen et al. (2007[Valkonen, A., Lahtinen, T. & Rissanen, K. (2007). Acta Cryst. E63, o472-o473.]); Barchin et al. (2002[Barchin, B. M., Cuadro, A. M. & Alvarez-Builla, J. (2002). Synlett, 2, 343-345.]). For related structures, see: Xu et al. (2006[Xu, D., Shi, Y.-Q., Chen, B., Cheng, Y.-H. & Gao, X. (2006). Acta Cryst. E62, o408-o409.]); Fu et al. (2010[Fu, X.-S., Yu, X.-P., Wang, W.-M. & Lin, F. (2010). Acta Cryst. E66, o1744.]).

[Scheme 1]

Experimental

Crystal data
  • C14H6F3NO2

  • Mr = 277.20

  • Monoclinic, P 21 /n

  • a = 6.8422 (14) Å

  • b = 21.082 (4) Å

  • c = 7.9727 (16) Å

  • β = 101.98 (3)°

  • V = 1125.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.972, Tmax = 0.983

  • 8049 measured reflections

  • 1980 independent reflections

  • 1603 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.03

  • 1980 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.55 3.1855 (18) 124
C10—H10⋯F1ii 0.95 2.54 3.3647 (18) 145
C11—H11⋯O1iii 0.95 2.55 3.428 (2) 154
Symmetry codes: (i) x, y, z-1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a key intermediate in the synthesis of organic electro-luminescent materials. The emission of light by organic molecules exposed to an electric field has been wide investigated in both an academic and industrial context. (Han & Kay, 2005).

The molecular structure of the title compound is illustrated in Fig. 1. In the title compound, two rings are nearly planar, but the molecule as a whole is not planar. The dihedral angle between the benzene ring and the phthalimide plane is 60.12 (7) °, which is similar to 59.95 (4) ° found in a related compound N-(2-fluorophenyl)phthalimide (Xu et al. 2006). Weak intermolecular C—H···O and C—H···F hydrogen bonding are present in the crystal structure (Table 1).

Related literature top

The title compound is a key intermediate in the synthesis of organic electro-luminescent materials, see: Han & Kay (2005). For the synthesis, see: Valkonen et al. (2007); Barchin et al. (2002). For related structures, see: Xu et al. (2006); Fu et al. (2010).

Experimental top

An acetic acid solution of phthalic anhydride (14.8 g, 100 mmol) and 2,3,4-trifluoroaniline (10.55 ml, 100 mmol) was refluxed overnight, and then filtered. The crude product was recrystallized from ethyl acetate.

Refinement top

H atoms were positioned geometrically and refined as riding with C—H = 0.95 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
N-(2,3,4-Trifluorophenyl)phthalimide top
Crystal data top
C14H6F3NO2F(000) = 560
Mr = 277.20Dx = 1.637 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3644 reflections
a = 6.8422 (14) Åθ = 1.9–27.8°
b = 21.082 (4) ŵ = 0.14 mm1
c = 7.9727 (16) ÅT = 113 K
β = 101.98 (3)°Prism, colorless
V = 1125.0 (4) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1980 independent reflections
Radiation source: rotating anode1603 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω and ϕ scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2425
Tmin = 0.972, Tmax = 0.983l = 79
8049 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0663P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
1980 reflectionsΔρmax = 0.34 e Å3
182 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.097 (6)
Crystal data top
C14H6F3NO2V = 1125.0 (4) Å3
Mr = 277.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8422 (14) ŵ = 0.14 mm1
b = 21.082 (4) ÅT = 113 K
c = 7.9727 (16) Å0.20 × 0.18 × 0.12 mm
β = 101.98 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1980 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1603 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.983Rint = 0.034
8049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
1980 reflectionsΔρmin = 0.21 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.36805 (13)0.27803 (5)1.30697 (12)0.0324 (3)
F20.04277 (12)0.20200 (5)1.25161 (11)0.0286 (3)
F30.00346 (11)0.10870 (4)1.01757 (10)0.0245 (3)
O10.29321 (15)0.14544 (5)0.58108 (12)0.0246 (3)
O20.28164 (15)0.00092 (5)1.01024 (12)0.0228 (3)
N10.28999 (17)0.08556 (6)0.82561 (14)0.0181 (3)
C10.28328 (19)0.09456 (7)0.64828 (17)0.0176 (3)
C20.26306 (18)0.02990 (7)0.57338 (17)0.0162 (3)
C30.2489 (2)0.01067 (7)0.40531 (18)0.0193 (4)
H30.24750.04060.31600.023*
C40.23668 (19)0.05431 (8)0.37222 (18)0.0214 (4)
H40.22720.06900.25820.026*
C50.2381 (2)0.09816 (8)0.50331 (18)0.0231 (4)
H50.23020.14220.47710.028*
C60.2507 (2)0.07859 (7)0.67177 (18)0.0200 (3)
H60.25100.10830.76130.024*
C70.26293 (18)0.01410 (7)0.70366 (16)0.0161 (3)
C80.27847 (19)0.02073 (7)0.86743 (17)0.0168 (3)
C90.31396 (19)0.13524 (7)0.94859 (17)0.0175 (3)
C100.4794 (2)0.17526 (7)0.97522 (18)0.0216 (4)
H100.57960.16930.91020.026*
C110.4998 (2)0.22367 (8)1.09549 (19)0.0240 (4)
H110.61250.25101.11290.029*
C120.3538 (2)0.23125 (7)1.18896 (18)0.0225 (4)
C130.1879 (2)0.19236 (8)1.16429 (18)0.0207 (4)
C140.16934 (19)0.14500 (7)1.04425 (17)0.0181 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0371 (5)0.0252 (6)0.0336 (5)0.0042 (4)0.0044 (4)0.0152 (4)
F20.0289 (5)0.0319 (6)0.0280 (5)0.0003 (4)0.0132 (4)0.0096 (4)
F30.0213 (5)0.0273 (6)0.0262 (5)0.0077 (4)0.0080 (3)0.0059 (4)
O10.0342 (6)0.0189 (7)0.0220 (6)0.0039 (5)0.0086 (4)0.0058 (4)
O20.0300 (6)0.0236 (7)0.0159 (5)0.0026 (4)0.0072 (4)0.0024 (4)
N10.0239 (6)0.0158 (7)0.0156 (6)0.0014 (5)0.0062 (5)0.0003 (5)
C10.0159 (7)0.0224 (9)0.0150 (7)0.0029 (6)0.0044 (6)0.0032 (6)
C20.0126 (6)0.0191 (9)0.0172 (7)0.0018 (6)0.0039 (5)0.0014 (6)
C30.0164 (7)0.0271 (10)0.0145 (7)0.0022 (6)0.0030 (5)0.0015 (6)
C40.0175 (7)0.0288 (10)0.0177 (7)0.0014 (6)0.0029 (6)0.0041 (6)
C50.0228 (8)0.0215 (9)0.0253 (8)0.0002 (6)0.0053 (6)0.0065 (6)
C60.0210 (7)0.0184 (9)0.0209 (8)0.0001 (6)0.0047 (6)0.0006 (6)
C70.0139 (7)0.0190 (9)0.0157 (7)0.0007 (6)0.0035 (5)0.0001 (5)
C80.0157 (7)0.0179 (9)0.0176 (7)0.0003 (6)0.0051 (5)0.0010 (6)
C90.0216 (7)0.0165 (9)0.0141 (7)0.0006 (6)0.0027 (6)0.0007 (6)
C100.0222 (7)0.0198 (9)0.0242 (8)0.0010 (6)0.0076 (6)0.0027 (6)
C110.0229 (8)0.0199 (9)0.0280 (8)0.0045 (6)0.0025 (6)0.0012 (6)
C120.0285 (8)0.0165 (9)0.0200 (7)0.0011 (6)0.0003 (6)0.0041 (6)
C130.0215 (7)0.0233 (9)0.0181 (7)0.0027 (6)0.0058 (6)0.0008 (6)
C140.0172 (7)0.0180 (9)0.0179 (7)0.0029 (6)0.0011 (6)0.0005 (6)
Geometric parameters (Å, º) top
F1—C121.3525 (17)C4—H40.9500
F2—C131.3411 (17)C5—C61.390 (2)
F3—C141.3486 (16)C5—H50.9500
O1—C11.2072 (18)C6—C71.382 (2)
O2—C81.2087 (16)C6—H60.9500
N1—C81.4129 (19)C7—C81.4824 (19)
N1—C11.4178 (17)C9—C141.384 (2)
N1—C91.4207 (18)C9—C101.392 (2)
C1—C21.483 (2)C10—C111.387 (2)
C2—C31.3840 (19)C10—H100.9500
C2—C71.3927 (19)C11—C121.374 (2)
C3—C41.394 (2)C11—H110.9500
C3—H30.9500C12—C131.381 (2)
C4—C51.394 (2)C13—C141.371 (2)
C8—N1—C1111.90 (11)C2—C7—C8108.41 (13)
C8—N1—C9123.66 (11)O2—C8—N1124.44 (13)
C1—N1—C9124.39 (12)O2—C8—C7129.98 (14)
O1—C1—N1124.63 (13)N1—C8—C7105.58 (11)
O1—C1—C2130.33 (13)C14—C9—C10118.52 (13)
N1—C1—C2105.04 (12)C14—C9—N1119.76 (12)
C3—C2—C7121.07 (14)C10—C9—N1121.72 (12)
C3—C2—C1129.87 (13)C11—C10—C9120.87 (13)
C7—C2—C1109.05 (12)C11—C10—H10119.6
C2—C3—C4117.42 (13)C9—C10—H10119.6
C2—C3—H3121.3C12—C11—C10118.70 (14)
C4—C3—H3121.3C12—C11—H11120.7
C5—C4—C3121.26 (14)C10—C11—H11120.7
C5—C4—H4119.4F1—C12—C11120.43 (13)
C3—C4—H4119.4F1—C12—C13118.06 (13)
C6—C5—C4121.12 (15)C11—C12—C13121.50 (14)
C6—C5—H5119.5F2—C13—C14120.11 (13)
C4—C5—H5119.5F2—C13—C12120.76 (13)
C7—C6—C5117.30 (14)C14—C13—C12119.08 (13)
C7—C6—H6121.3F3—C14—C13118.45 (12)
C5—C6—H6121.3F3—C14—C9120.21 (12)
C6—C7—C2121.82 (13)C13—C14—C9121.32 (13)
C6—C7—C8129.77 (13)
C8—N1—C1—O1179.01 (13)C2—C7—C8—O2179.32 (13)
C9—N1—C1—O11.5 (2)C6—C7—C8—N1178.93 (13)
C8—N1—C1—C20.83 (14)C2—C7—C8—N10.75 (14)
C9—N1—C1—C2178.32 (11)C8—N1—C9—C1461.69 (18)
O1—C1—C2—C30.5 (2)C1—N1—C9—C14121.12 (15)
N1—C1—C2—C3179.72 (13)C8—N1—C9—C10118.90 (15)
O1—C1—C2—C7178.52 (14)C1—N1—C9—C1058.29 (18)
N1—C1—C2—C71.30 (14)C14—C9—C10—C110.3 (2)
C7—C2—C3—C40.67 (19)N1—C9—C10—C11179.76 (13)
C1—C2—C3—C4178.21 (12)C9—C10—C11—C120.3 (2)
C2—C3—C4—C50.2 (2)C10—C11—C12—F1179.77 (13)
C3—C4—C5—C60.3 (2)C10—C11—C12—C130.7 (2)
C4—C5—C6—C70.34 (19)F1—C12—C13—F21.9 (2)
C5—C6—C7—C20.13 (19)C11—C12—C13—F2177.27 (13)
C5—C6—C7—C8179.77 (13)F1—C12—C13—C14179.41 (13)
C3—C2—C7—C60.7 (2)C11—C12—C13—C140.3 (2)
C1—C2—C7—C6178.43 (12)F2—C13—C14—F30.3 (2)
C3—C2—C7—C8179.64 (11)C12—C13—C14—F3177.88 (12)
C1—C2—C7—C81.28 (14)F2—C13—C14—C9178.01 (12)
C1—N1—C8—O2179.85 (12)C12—C13—C14—C90.4 (2)
C9—N1—C8—O22.3 (2)C10—C9—C14—F3177.54 (12)
C1—N1—C8—C70.09 (14)N1—C9—C14—F31.9 (2)
C9—N1—C8—C7177.60 (11)C10—C9—C14—C130.7 (2)
C6—C7—C8—O21.0 (2)N1—C9—C14—C13179.83 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.553.1855 (18)124
C10—H10···F1ii0.952.543.3647 (18)145
C11—H11···O1iii0.952.553.428 (2)154
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H6F3NO2
Mr277.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)6.8422 (14), 21.082 (4), 7.9727 (16)
β (°) 101.98 (3)
V3)1125.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.972, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8049, 1980, 1603
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.03
No. of reflections1980
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.553.1855 (18)124
C10—H10···F1ii0.952.543.3647 (18)145
C11—H11···O1iii0.952.553.428 (2)154
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the Major Research Program of Zhejiang Province (No. 2008 C02007–2) and the Zhejiang Provincial Natural Science Foundation of China (No. Y307128).

References

First citationBarchin, B. M., Cuadro, A. M. & Alvarez-Builla, J. (2002). Synlett, 2, 343–345.  CrossRef Google Scholar
First citationFu, X.-S., Yu, X.-P., Wang, W.-M. & Lin, F. (2010). Acta Cryst. E66, o1744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, K. J. & Kay, K. Y. (2005). J. Korean Chem. Soc. 49, 233–238.  CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValkonen, A., Lahtinen, T. & Rissanen, K. (2007). Acta Cryst. E63, o472–o473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, D., Shi, Y.-Q., Chen, B., Cheng, Y.-H. & Gao, X. (2006). Acta Cryst. E62, o408–o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds