organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(7E)-5-Benzyl-7-(2-chloro­benzyl­­idene)-3-(2-chloro­phen­yl)-2-phenyl-3,3a,4,5,6,7-hexa­hydro-2H-pyrazolo­[4,3-c]pyridine

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India, bSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, India, and cBioinformatics Infrastructure Facility, Department of Biotechnology, School of Life Science, University of Hyderabad, Hyderabad 500 046, India
*Correspondence e-mail: ravindranath_rathore@yahoo.com

(Received 15 June 2010; accepted 16 June 2010; online 23 June 2010)

In the title 2H-pyrazolo­[4,3-c]pyridine derivative, C32H27Cl2N3, the dihydro­pyrazole ring adopts an envelope conformation and the piperidine fused ring a twisted-chair conformation. Two short intra­molecular C—H⋯Cl contacts are observed. The crystal packing is characterized by dimeric C—Cl⋯π inter­actions involving the 5-benzyl ring, with Cl⋯centroid and closest atomic Cl⋯π distances of 3.778 (2) and 3.366 (4) Å, respectively.

Related literature

For the anti-inflammatory activity of 2H-pyrazolo­[4,3-c]pyridine derivatives, see Krapcho & Turk (1975[Krapcho, J. & Turk, C. F. (1975). US Patent No. 3 923 816.]). For π-halogen-dimer inter­actions and their role in host–guest chemistry, see: Noman et al. (2004[Noman, A., Rehman, M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2004). J. Org. Biomol. Chem. 2, 175-182.]); Nagaraj et al. (2005[Nagaraj, B., Narasimhamurthy, T., Yathirajan, H. S., Nagaraja, P., Narasegowda, R. S. & Rathore, R. S. (2005). Acta Cryst. C61, o177-o180.]).

[Scheme 1]

Experimental

Crystal data
  • C32H27Cl2N3

  • Mr = 524.47

  • Monoclinic, P 21 /c

  • a = 13.7117 (7) Å

  • b = 15.4451 (6) Å

  • c = 13.6896 (9) Å

  • β = 113.135 (7)°

  • V = 2666.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 294 K

  • 0.36 × 0.26 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.909, Tmax = 0.943

  • 11774 measured reflections

  • 5436 independent reflections

  • 2483 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.098

  • S = 0.83

  • 5436 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1 0.98 2.61 3.101 (2) 111
C27—H27⋯Cl2 0.93 2.68 3.043 (3) 104

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Derivatives of 2H-pyrazolo[4,3-c]pyridine have been tested for anti-inflammatory activity (Krapcho & Turk, 1975). A search in Cambridge Structural Database (version 5.31) for such compounds retrieved zero hits. With a purpose to study hitherto unexplored structures of these compounds, we here report the synthesis and structural investigations on, 5-benzyl-(7E)-7-(2-chlorobenzylidene)-3-(2-chlorophenyl)-2-phenyl- 3,3a,4,5,6,7-hexahydro-2H-pyrazolo[4,3-c]pyridine, (I).

The structure of (I) with adopted atomic numbering scheme is shown in Fig 1. (I) is a racemic mixture. In the reported model, the stereogenic centers C3 and C3A possess R-configurations. The five-membered dihydropyrazole ring (N1/N2/C3/C3A/C7A) adopt an envelope conformation with atom C3 at the flap of the envelope (Ring puckering parameters are: q2 = 0.204 (2) Å, ϕ2 = 248.3 (6)°). The adjacent 6-membered piperidine ring (C3A/C4/N5/C6/C7/C7A) assumes a chair conformation which is substantially twisted from ideal geometry. The puckering parameters are as follows: q2 = 0.189 (2) Å, q3 = -0.468 (2) Å, θ = 158.0 (2)°, ϕ = 209.5 (8)°, and total puckering amplitude, Q = 0.505 (2) Å.

Two short intra-molecular contacts C3—H3···Cl1 and C27—H27···Cl2 were observed (Table 1). Intermolecular C—Halogen···π contact stabilizes the dimeric units in (I) (Fig 2). A dimer is formed by C29—Cl2···Cg5i [symmetry code (i): 1 - x, 1 - y, 1 - z]. The Cl2..Cg5 distance and C29—Cl2···Cg5 angle are 3.778 (2)Å and 141.2 (1)° respectively, whereas the minimum atomic distance in Cl2···π is 3.366 (4) Å. Cg5 is the centroid of (C21–C26) ring. The C—Halogen···π dimeric interactions [also referred as PHD; π-halogen-dimer interactions (Noman et al. 2004)] have been shown recently, to play an important role in host–guest chemistry (Nagaraj et al., 2005; references therein).

Related literature top

For the anti-inflammatory activity of 2H-pyrazolo[4,3-c]pyridine derivatives, see Krapcho & Turk (1975). For π-halogen-dimer interactions and their role in host–guest chemistry, see: Noman et al. (2004); Nagaraj et al. (2005).

Experimental top

1-benzyl-3, 5-dibenzylidenepiperidin-4-one (0.003 mol) and phenyl hydrazine (0.003 mol) were dissolved in 2-propanol. The reaction mixture was refluxed for 1–2 h on a water bath and tested with TLC at regular intervals for completeness of reaction. Following that, the resulting mixture was cooled and poured into crushed ice. The solid so obtained was separated, washed with water and subjected to column chromatography using ethyl acetate and n-hexane. Final yield 89%, m.p. 153–155° C. Suitable single crystals for data collection were grown from ethanol and tetrahydrofuran mixture in 1:1 ratio.

Refinement top

H atoms were placed in their stereochemically expected positions and refined with the riding options. The distances with hydrogen atoms are: C(aromatic/sp2)—H = 0.93 Å, C(methylene)—H = 0.97 Å, C(methine)—H = 0.98 Å, and Uiso = 1.2 Ueq(parent atom).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I) with non-H atoms shown as probability ellipsoids at 30% levels (Farrugia, 1997). The radii of H atoms are on an arbitrary scale. Dashed lines indicate short intra-molecular C—H···Cl contacts.
[Figure 2] Fig. 2. Dimeric subunits linked by C—Halogen···π interaction in (I). Cg5 is the centroid of (C21—C26) ring.
(7E)-5-Benzyl-7-(2-chlorobenzylidene)-3-(2-chlorophenyl)-2-phenyl- 3,3a,4,5,6,7-hexahydro-2H-pyrazolo[4,3-c]pyridine top
Crystal data top
C32H27Cl2N3F(000) = 1096
Mr = 524.47Dx = 1.307 Mg m3
Monoclinic, P21/cMelting point: 427(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.7117 (7) ÅCell parameters from 2998 reflections
b = 15.4451 (6) Åθ = 2.6–29.1°
c = 13.6896 (9) ŵ = 0.27 mm1
β = 113.135 (7)°T = 294 K
V = 2666.0 (2) Å3Plate, colorless
Z = 40.36 × 0.26 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
5436 independent reflections
Radiation source: Enhance (Mo) X-ray Source2483 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 16.3291 pixels mm-1θmax = 26.4°, θmin = 2.6°
ω scanh = 1417
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1917
Tmin = 0.909, Tmax = 0.943l = 1517
11774 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0389P)2]
where P = (Fo2 + 2Fc2)/3
5436 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C32H27Cl2N3V = 2666.0 (2) Å3
Mr = 524.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7117 (7) ŵ = 0.27 mm1
b = 15.4451 (6) ÅT = 294 K
c = 13.6896 (9) Å0.36 × 0.26 × 0.22 mm
β = 113.135 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
5436 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2483 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.943Rint = 0.049
11774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.83Δρmax = 0.17 e Å3
5436 reflectionsΔρmin = 0.23 e Å3
334 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01-2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.68994 (17)0.48100 (13)0.39914 (17)0.0384 (6)
H30.73430.43160.39790.046*
C3A0.60177 (16)0.44975 (13)0.43353 (18)0.0372 (6)
H3A0.58470.49580.47350.045*
C40.62227 (17)0.36610 (14)0.49646 (19)0.0466 (7)
H4A0.64890.32250.46230.056*
H4B0.67530.37560.56750.056*
C60.44171 (18)0.31461 (13)0.39584 (19)0.0483 (7)
H6A0.37700.29700.40310.058*
H6B0.46650.26590.36710.058*
C70.41706 (18)0.38915 (13)0.31845 (19)0.0399 (6)
C7A0.51168 (17)0.43857 (14)0.32849 (19)0.0396 (6)
C80.67598 (17)0.52120 (13)0.21565 (19)0.0372 (6)
C90.78552 (18)0.51570 (14)0.24683 (19)0.0440 (6)
H90.82860.50280.31700.053*
C100.8300 (2)0.52943 (15)0.1736 (2)0.0538 (7)
H100.90330.52610.19540.065*
C110.7685 (2)0.54792 (15)0.0691 (2)0.0565 (7)
H110.79920.55610.02020.068*
C120.6598 (2)0.55403 (15)0.0385 (2)0.0563 (7)
H120.61730.56710.03170.068*
C130.61374 (19)0.54113 (14)0.1102 (2)0.0491 (7)
H130.54060.54580.08820.059*
C140.75983 (17)0.55254 (13)0.46627 (18)0.0371 (6)
C150.86179 (18)0.53885 (15)0.54037 (19)0.0496 (7)
C160.9251 (2)0.60585 (19)0.5984 (2)0.0626 (8)
H160.99350.59460.64740.075*
C170.8869 (2)0.68811 (19)0.5834 (2)0.0629 (8)
H170.92970.73360.62110.075*
C180.7853 (2)0.70400 (16)0.5126 (2)0.0603 (8)
H180.75840.76010.50380.072*
C190.72281 (19)0.63714 (15)0.4546 (2)0.0494 (7)
H190.65420.64890.40640.059*
C200.5425 (2)0.25732 (14)0.5690 (2)0.0565 (7)
H20A0.57100.21250.53810.068*
H20B0.47570.23660.56880.068*
C210.6183 (2)0.27240 (15)0.6818 (2)0.0503 (7)
C220.7124 (2)0.22752 (18)0.7258 (3)0.0785 (10)
H220.72950.18630.68550.094*
C230.7823 (3)0.2434 (2)0.8303 (4)0.0997 (14)
H230.84600.21320.85940.120*
C240.7569 (3)0.3035 (2)0.8899 (3)0.0999 (14)
H240.80350.31410.95960.120*
C250.6636 (3)0.34798 (18)0.8477 (2)0.0777 (9)
H250.64620.38860.88840.093*
C260.5955 (2)0.33212 (16)0.7442 (2)0.0601 (8)
H260.53220.36280.71560.072*
C270.32178 (17)0.41049 (14)0.2455 (2)0.0456 (6)
H270.32000.46180.20920.055*
C280.21940 (17)0.36564 (15)0.21350 (18)0.0413 (6)
C290.12329 (18)0.41044 (14)0.1697 (2)0.0454 (6)
C300.02629 (18)0.36958 (16)0.1313 (2)0.0552 (7)
H300.03590.40170.10190.066*
C310.0221 (2)0.28080 (17)0.1368 (2)0.0593 (8)
H310.04290.25240.11130.071*
C320.1142 (2)0.23457 (15)0.1800 (2)0.0570 (8)
H320.11150.17460.18450.068*
C330.21102 (19)0.27578 (15)0.21688 (19)0.0507 (7)
H330.27260.24280.24480.061*
N10.52729 (14)0.47054 (11)0.24903 (16)0.0431 (5)
N20.62818 (14)0.51001 (11)0.28892 (15)0.0403 (5)
N50.52271 (14)0.33591 (11)0.50228 (15)0.0428 (5)
Cl10.91528 (6)0.43491 (4)0.56217 (7)0.0870 (3)
Cl20.12374 (5)0.52302 (4)0.16351 (7)0.0764 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0318 (12)0.0456 (13)0.0375 (14)0.0018 (11)0.0133 (12)0.0007 (12)
C3A0.0334 (13)0.0410 (14)0.0401 (14)0.0001 (10)0.0174 (12)0.0006 (12)
C40.0388 (14)0.0504 (15)0.0494 (16)0.0005 (11)0.0161 (14)0.0036 (13)
C60.0433 (15)0.0498 (15)0.0512 (17)0.0036 (12)0.0179 (14)0.0057 (13)
C70.0361 (14)0.0483 (14)0.0384 (15)0.0021 (11)0.0179 (13)0.0016 (12)
C7A0.0332 (14)0.0460 (14)0.0429 (16)0.0006 (11)0.0187 (13)0.0023 (12)
C80.0335 (14)0.0410 (13)0.0380 (14)0.0044 (11)0.0152 (13)0.0030 (12)
C90.0394 (15)0.0571 (15)0.0380 (15)0.0010 (12)0.0180 (13)0.0014 (12)
C100.0424 (15)0.0719 (17)0.0555 (18)0.0033 (13)0.0281 (16)0.0068 (15)
C110.0635 (19)0.0644 (17)0.0556 (19)0.0102 (14)0.0384 (17)0.0052 (15)
C120.0599 (19)0.0697 (17)0.0403 (16)0.0072 (14)0.0208 (16)0.0048 (14)
C130.0379 (14)0.0639 (17)0.0440 (16)0.0046 (12)0.0143 (14)0.0015 (14)
C140.0351 (13)0.0438 (14)0.0352 (14)0.0031 (11)0.0167 (12)0.0005 (12)
C150.0405 (14)0.0607 (16)0.0414 (15)0.0023 (13)0.0095 (14)0.0021 (13)
C160.0460 (16)0.084 (2)0.0463 (18)0.0079 (16)0.0063 (15)0.0097 (16)
C170.063 (2)0.074 (2)0.0553 (19)0.0245 (16)0.0269 (17)0.0207 (16)
C180.070 (2)0.0479 (15)0.072 (2)0.0065 (14)0.0376 (19)0.0086 (15)
C190.0418 (15)0.0516 (16)0.0548 (17)0.0009 (13)0.0187 (14)0.0034 (14)
C200.0609 (17)0.0449 (15)0.0643 (19)0.0002 (13)0.0252 (17)0.0074 (14)
C210.0457 (16)0.0430 (15)0.0597 (19)0.0010 (13)0.0179 (16)0.0206 (15)
C220.063 (2)0.0688 (19)0.102 (3)0.0148 (16)0.031 (2)0.037 (2)
C230.051 (2)0.090 (3)0.130 (4)0.010 (2)0.007 (3)0.064 (3)
C240.073 (3)0.095 (3)0.090 (3)0.032 (2)0.013 (2)0.049 (2)
C250.083 (2)0.077 (2)0.057 (2)0.0231 (18)0.010 (2)0.0085 (18)
C260.0543 (18)0.0576 (17)0.0574 (19)0.0043 (14)0.0100 (17)0.0125 (16)
C270.0397 (15)0.0499 (14)0.0486 (17)0.0030 (12)0.0189 (14)0.0001 (13)
C280.0369 (14)0.0516 (15)0.0361 (15)0.0030 (12)0.0152 (13)0.0033 (12)
C290.0399 (15)0.0487 (14)0.0493 (16)0.0047 (12)0.0193 (14)0.0013 (13)
C300.0377 (15)0.0598 (17)0.0600 (19)0.0001 (12)0.0104 (15)0.0037 (15)
C310.0448 (16)0.0624 (18)0.0586 (19)0.0144 (14)0.0072 (16)0.0048 (15)
C320.0527 (17)0.0477 (15)0.0564 (18)0.0077 (13)0.0060 (16)0.0058 (14)
C330.0448 (16)0.0528 (16)0.0465 (16)0.0005 (12)0.0093 (14)0.0077 (13)
N10.0299 (11)0.0542 (12)0.0451 (13)0.0051 (9)0.0145 (11)0.0001 (11)
N20.0287 (11)0.0570 (12)0.0350 (12)0.0049 (9)0.0124 (10)0.0001 (10)
N50.0400 (12)0.0443 (11)0.0434 (12)0.0051 (9)0.0156 (11)0.0044 (10)
Cl10.0653 (5)0.0766 (5)0.0839 (6)0.0217 (4)0.0087 (5)0.0038 (4)
Cl20.0549 (4)0.0535 (4)0.1194 (7)0.0007 (3)0.0327 (5)0.0127 (4)
Geometric parameters (Å, º) top
C3—N21.480 (3)C17—C181.372 (3)
C3—C141.514 (3)C17—H170.9300
C3—C3A1.537 (3)C18—C191.377 (3)
C3—H30.9800C18—H180.9300
C3A—C7A1.493 (3)C19—H190.9300
C3A—C41.517 (3)C20—N51.478 (3)
C3A—H3A0.9800C20—C211.503 (3)
C4—N51.474 (3)C20—H20A0.9700
C4—H4A0.9700C20—H20B0.9700
C4—H4B0.9700C21—C261.373 (3)
C6—N51.481 (3)C21—C221.377 (3)
C6—C71.510 (3)C22—C231.397 (4)
C6—H6A0.9700C22—H220.9300
C6—H6B0.9700C23—C241.368 (5)
C7—C271.337 (3)C23—H230.9300
C7—C7A1.464 (3)C24—C251.364 (4)
C7A—N11.287 (3)C24—H240.9300
C8—C131.392 (3)C25—C261.379 (3)
C8—C91.393 (3)C25—H250.9300
C8—N21.408 (3)C26—H260.9300
C9—C101.379 (3)C27—C281.470 (3)
C9—H90.9300C27—H270.9300
C10—C111.375 (3)C28—C331.395 (3)
C10—H100.9300C28—C291.398 (3)
C11—C121.383 (3)C29—C301.376 (3)
C11—H110.9300C29—Cl21.741 (2)
C12—C131.375 (3)C30—C311.376 (3)
C12—H120.9300C30—H300.9300
C13—H130.9300C31—C321.367 (3)
C14—C151.383 (3)C31—H310.9300
C14—C191.388 (3)C32—C331.376 (3)
C15—C161.383 (3)C32—H320.9300
C15—Cl11.741 (2)C33—H330.9300
C16—C171.359 (3)N1—N21.411 (2)
C16—H160.9300
N2—C3—C14111.73 (17)C18—C17—H17120.1
N2—C3—C3A101.74 (17)C17—C18—C19120.2 (2)
C14—C3—C3A115.45 (19)C17—C18—H18119.9
N2—C3—H3109.2C19—C18—H18119.9
C14—C3—H3109.2C18—C19—C14121.5 (2)
C3A—C3—H3109.2C18—C19—H19119.2
C7A—C3A—C4110.32 (17)C14—C19—H19119.2
C7A—C3A—C3101.19 (18)N5—C20—C21113.11 (18)
C4—C3A—C3116.68 (18)N5—C20—H20A109.0
C7A—C3A—H3A109.4C21—C20—H20A109.0
C4—C3A—H3A109.4N5—C20—H20B109.0
C3—C3A—H3A109.4C21—C20—H20B109.0
N5—C4—C3A109.35 (17)H20A—C20—H20B107.8
N5—C4—H4A109.8C26—C21—C22118.0 (3)
C3A—C4—H4A109.8C26—C21—C20120.6 (2)
N5—C4—H4B109.8C22—C21—C20121.5 (3)
C3A—C4—H4B109.8C21—C22—C23120.5 (3)
H4A—C4—H4B108.3C21—C22—H22119.8
N5—C6—C7113.30 (17)C23—C22—H22119.8
N5—C6—H6A108.9C24—C23—C22119.8 (3)
C7—C6—H6A108.9C24—C23—H23120.1
N5—C6—H6B108.9C22—C23—H23120.1
C7—C6—H6B108.9C25—C24—C23120.3 (3)
H6A—C6—H6B107.7C25—C24—H24119.8
C27—C7—C7A120.7 (2)C23—C24—H24119.8
C27—C7—C6126.6 (2)C24—C25—C26119.3 (3)
C7A—C7—C6112.69 (19)C24—C25—H25120.4
N1—C7A—C7123.8 (2)C26—C25—H25120.4
N1—C7A—C3A114.9 (2)C21—C26—C25122.1 (3)
C7—C7A—C3A121.2 (2)C21—C26—H26119.0
C13—C8—C9118.6 (2)C25—C26—H26119.0
C13—C8—N2119.9 (2)C7—C27—C28130.2 (2)
C9—C8—N2121.5 (2)C7—C27—H27114.9
C10—C9—C8120.0 (2)C28—C27—H27114.9
C10—C9—H9120.0C33—C28—C29115.5 (2)
C8—C9—H9120.0C33—C28—C27122.7 (2)
C11—C10—C9121.4 (2)C29—C28—C27121.6 (2)
C11—C10—H10119.3C30—C29—C28122.9 (2)
C9—C10—H10119.3C30—C29—Cl2117.43 (18)
C10—C11—C12118.5 (3)C28—C29—Cl2119.63 (17)
C10—C11—H11120.7C31—C30—C29119.4 (2)
C12—C11—H11120.7C31—C30—H30120.3
C13—C12—C11121.1 (3)C29—C30—H30120.3
C13—C12—H12119.5C32—C31—C30119.6 (2)
C11—C12—H12119.5C32—C31—H31120.2
C12—C13—C8120.4 (2)C30—C31—H31120.2
C12—C13—H13119.8C31—C32—C33120.7 (2)
C8—C13—H13119.8C31—C32—H32119.6
C15—C14—C19116.5 (2)C33—C32—H32119.6
C15—C14—C3123.4 (2)C32—C33—C28121.9 (2)
C19—C14—C3120.10 (19)C32—C33—H33119.1
C16—C15—C14122.2 (2)C28—C33—H33119.1
C16—C15—Cl1117.7 (2)C7A—N1—N2107.59 (19)
C14—C15—Cl1120.18 (18)C8—N2—N1115.95 (18)
C17—C16—C15119.7 (2)C8—N2—C3121.56 (17)
C17—C16—H16120.2N1—N2—C3110.18 (17)
C15—C16—H16120.2C4—N5—C20110.11 (18)
C16—C17—C18119.9 (2)C4—N5—C6111.69 (18)
C16—C17—H17120.1C20—N5—C6108.06 (17)
N2—C3—C3A—C7A18.3 (2)C26—C21—C22—C230.6 (4)
C14—C3—C3A—C7A139.43 (18)C20—C21—C22—C23179.1 (2)
N2—C3—C3A—C4137.96 (19)C21—C22—C23—C240.5 (5)
C14—C3—C3A—C4100.9 (2)C22—C23—C24—C250.0 (5)
C7A—C3A—C4—N552.9 (2)C23—C24—C25—C260.4 (5)
C3—C3A—C4—N5167.63 (18)C22—C21—C26—C250.2 (4)
N5—C6—C7—C27141.8 (2)C20—C21—C26—C25179.5 (2)
N5—C6—C7—C7A39.4 (3)C24—C25—C26—C210.3 (4)
C27—C7—C7A—N136.8 (3)C7A—C7—C27—C28172.6 (2)
C6—C7—C7A—N1142.1 (2)C6—C7—C27—C286.1 (4)
C27—C7—C7A—C3A147.8 (2)C7—C27—C28—C3331.2 (4)
C6—C7—C7A—C3A33.3 (3)C7—C27—C28—C29153.8 (3)
C4—C3A—C7A—N1135.4 (2)C33—C28—C29—C300.6 (4)
C3—C3A—C7A—N111.3 (2)C27—C28—C29—C30174.7 (2)
C4—C3A—C7A—C740.4 (3)C33—C28—C29—Cl2178.85 (18)
C3—C3A—C7A—C7164.53 (19)C27—C28—C29—Cl25.9 (3)
C13—C8—C9—C100.4 (3)C28—C29—C30—C310.9 (4)
N2—C8—C9—C10178.2 (2)Cl2—C29—C30—C31178.6 (2)
C8—C9—C10—C110.6 (4)C29—C30—C31—C320.2 (4)
C9—C10—C11—C121.1 (4)C30—C31—C32—C330.8 (4)
C10—C11—C12—C130.6 (4)C31—C32—C33—C281.1 (4)
C11—C12—C13—C80.3 (4)C29—C28—C33—C320.4 (4)
C9—C8—C13—C120.8 (3)C27—C28—C33—C32175.6 (2)
N2—C8—C13—C12178.6 (2)C7—C7A—N1—N2177.40 (19)
N2—C3—C14—C15140.5 (2)C3A—C7A—N1—N21.7 (3)
C3A—C3—C14—C15103.9 (3)C13—C8—N2—N135.8 (3)
N2—C3—C14—C1939.0 (3)C9—C8—N2—N1146.42 (19)
C3A—C3—C14—C1976.6 (3)C13—C8—N2—C3174.33 (19)
C19—C14—C15—C161.5 (4)C9—C8—N2—C37.9 (3)
C3—C14—C15—C16178.0 (2)C7A—N1—N2—C8158.2 (2)
C19—C14—C15—Cl1179.33 (19)C7A—N1—N2—C315.1 (2)
C3—C14—C15—Cl11.2 (3)C14—C3—N2—C874.5 (2)
C14—C15—C16—C170.3 (4)C3A—C3—N2—C8161.78 (18)
Cl1—C15—C16—C17179.5 (2)C14—C3—N2—N1144.89 (18)
C15—C16—C17—C181.3 (4)C3A—C3—N2—N121.2 (2)
C16—C17—C18—C191.8 (4)C3A—C4—N5—C20176.51 (18)
C17—C18—C19—C140.6 (4)C3A—C4—N5—C663.4 (2)
C15—C14—C19—C181.1 (4)C21—C20—N5—C461.7 (3)
C3—C14—C19—C18178.5 (2)C21—C20—N5—C6176.1 (2)
N5—C20—C21—C2659.8 (3)C7—C6—N5—C456.7 (2)
N5—C20—C21—C22119.9 (2)C7—C6—N5—C20178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl10.982.613.101 (2)111
C27—H27···Cl20.932.683.043 (3)104

Experimental details

Crystal data
Chemical formulaC32H27Cl2N3
Mr524.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)13.7117 (7), 15.4451 (6), 13.6896 (9)
β (°) 113.135 (7)
V3)2666.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.36 × 0.26 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.909, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
11774, 5436, 2483
Rint0.049
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.098, 0.83
No. of reflections5436
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl10.982.613.101 (2)111
C27—H27···Cl20.932.683.043 (3)104
 

Acknowledgements

The Bioinformatics Infrastructure Facility and the Single Crystal X-ray Diffractometer Facility at the University of Hyderabad are gratefully acknowledged are gratefully acknowledged for computation and data collection. RSR thanks the CSIR, New Delhi, for support under the scientist's pool scheme and NSK thanks the CSIR, New Delhi, for a Senior Research Fellowship.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKrapcho, J. & Turk, C. F. (1975). US Patent No. 3 923 816.  Google Scholar
First citationNagaraj, B., Narasimhamurthy, T., Yathirajan, H. S., Nagaraja, P., Narasegowda, R. S. & Rathore, R. S. (2005). Acta Cryst. C61, o177–o180.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNoman, A., Rehman, M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2004). J. Org. Biomol. Chem. 2, 175–182.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds