organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,7-Di­hydro-3H-1,4-diazepino[1,2,3,4-lmn][1,10]phenanthroline-3,9(5H)-dione

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, bDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and cChemistry Department, Clemson University, Clemson, SC 29634-0973, USA
*Correspondence e-mail: raza_shahm@yahoo.com

(Received 22 June 2010; accepted 24 June 2010; online 30 June 2010)

In the title compound, C15H12N2O2, the seven-membered ring bearing the three methyl­ene C atoms displays a puckered conformation, with the methyl­ene C atoms deviating from the plane of the benzene ring by 0.05 (1), 0.98 (1) and 1.04 (1) Å. The phenanthroline unit is not planar; the dihedral angles between this benzene ring and the other pyridyl rings are 9.62 (4) and 9.31 (4)°. The crystal packing is stabilized by ππ inter­actions between two phenanthroline ring systems, forming a centrosymmetric dimer with a centroid–centroid distance of 3.656 (1) Å.

Related literature

For background to ππ inter­actions in supra­molecular chemistry, see: Sisson et al. (2006[Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269-1286]). For a related structure, see: Nadeem et al. (2009[Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O2

  • Mr = 252.27

  • Monoclinic, P 21 /n

  • a = 9.1853 (18) Å

  • b = 13.931 (3) Å

  • c = 9.4956 (19) Å

  • β = 111.14 (3)°

  • V = 1133.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 158 K

  • 0.50 × 0.46 × 0.38 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.952, Tmax = 0.963

  • 8367 measured reflections

  • 2309 independent reflections

  • 2115 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.06

  • 2309 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In supramolecular chemistry it is well establish that the self-association of individual molecules can lead to the formation of highly complex and fascinating supramolecular assemblies if ππ interactions contribute to the formation of specific motifs (Sisson et al., 2006). As a part of our ongoing investigation on the nature of π-π (Nadeem et al., 2009) stacking and supramolecular chemistry, the title compound (Figure-1), has been prepared and its crystal structure is reported here. The crystal packing is stabilized by π-π interactions between two phenanthroline ring systems forming a centrosymmetric dimer with a centroid···centroid distance of 3.656 (1) Å. A typical double bond distance 1.236 (2) Å was observed for C1—O1 C8—O2 while a characteristic single bond distances 1.386 (1) Å and 1.393 (1) Å were observed for C1—N1 and C8—N2 respectively.

Related literature top

For background to ππ interactions in supramolecular chemistry, see: Sisson et al. (2006). For a related structure, see: Nadeem et al. (2009).

Experimental top

To an ice-cooled solution of potassium hexacyanoferrate(III) (58.6g) and sodium hydroxide (26.8g) in water (100ml) were added in small portions a solution of 6,7-dihydro-5H-[1,4]diazepino[1,2,3,4-lmn][1,10]phenanthroline-4,8-diium bromide (7.6g) in water (50ml),maintaining the temperature under 278 K for 10 minutes. The resulting mixture was neutralized by a dropwise addition of concentrated hydrochloric acid at 273 K. The residual brown pasty material was extracted three times with chloroform, subjected to column chromatography (DCM:MeOH; 100ml:1ml v/v), evaporated to dryness, recrystallization from methanol afforded 1.5g (30%) of title compound as pale yellow needles.

Refinement top

The H atoms were geometrically placed and treated as riding atoms with C—H = 0.96 Å, and Uiso(H) = 1.2 Ueq (parent C-atom).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular Structure of (I) with atom labels and 50% probability displacement ellipsoids.
6,7-Dihydro-3H-1,4-diazepino[1,2,3,4-lmn][1,10]phenanthroline- 3,9(5H)-dione top
Crystal data top
C15H12N2O2F(000) = 528
Mr = 252.27Dx = 1.478 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1853 (18) ÅCell parameters from 3526 reflections
b = 13.931 (3) Åθ = 2.7–26.4°
c = 9.4956 (19) ŵ = 0.10 mm1
β = 111.14 (3)°T = 158 K
V = 1133.3 (4) Å3Chip, yellow
Z = 40.50 × 0.46 × 0.38 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2309 independent reflections
Radiation source: Sealed Tube2115 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.016
Detector resolution: 14.6306 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = 119
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1717
Tmin = 0.952, Tmax = 0.963l = 1011
8367 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.3698P]
where P = (Fo2 + 2Fc2)/3
2309 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H12N2O2V = 1133.3 (4) Å3
Mr = 252.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1853 (18) ŵ = 0.10 mm1
b = 13.931 (3) ÅT = 158 K
c = 9.4956 (19) Å0.50 × 0.46 × 0.38 mm
β = 111.14 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2309 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2115 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.963Rint = 0.016
8367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
2309 reflectionsΔρmin = 0.23 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.02892 (11)0.14451 (7)0.36246 (11)0.0183 (2)
N20.79115 (11)0.11065 (7)0.06165 (11)0.0186 (2)
O11.09796 (11)0.14573 (7)0.61843 (10)0.0313 (2)
O20.53670 (10)0.10333 (7)0.09893 (10)0.0285 (2)
C11.13585 (14)0.13175 (9)0.50775 (13)0.0219 (3)
C21.29358 (14)0.10579 (9)0.52135 (13)0.0239 (3)
H21.36940.09110.61900.029*
C31.33514 (14)0.10204 (9)0.39944 (14)0.0234 (3)
H31.44230.09050.41280.028*
C3A1.22264 (13)0.11496 (8)0.24970 (13)0.0193 (3)
C41.26651 (14)0.11749 (8)0.12166 (14)0.0228 (3)
H41.37350.10750.13280.027*
C51.15645 (14)0.13419 (9)0.01825 (13)0.0223 (3)
H51.18790.14430.10320.027*
C5A0.99677 (14)0.13661 (8)0.03786 (13)0.0197 (3)
C60.87822 (15)0.14730 (9)0.18533 (13)0.0238 (3)
H60.90790.15760.27130.029*
C70.72644 (15)0.14297 (9)0.20391 (13)0.0250 (3)
H70.64970.15610.30180.030*
C80.67481 (14)0.11909 (8)0.08064 (14)0.0216 (3)
C8A0.94915 (13)0.12578 (8)0.08617 (13)0.0171 (3)
C8B1.06584 (13)0.12776 (8)0.23397 (13)0.0170 (2)
C90.74874 (13)0.06207 (8)0.17982 (13)0.0216 (3)
H9A0.82410.01290.22590.026*
H9B0.64880.03180.13410.026*
C100.74195 (14)0.13128 (9)0.30056 (14)0.0239 (3)
H10A0.74050.09610.38690.029*
H10B0.64830.16890.26250.029*
C110.88345 (13)0.19676 (8)0.34603 (13)0.0209 (3)
H11A0.86670.24600.27120.025*
H11B0.89500.22730.44010.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0176 (5)0.0208 (5)0.0166 (5)0.0005 (4)0.0063 (4)0.0000 (4)
N20.0164 (5)0.0197 (5)0.0181 (5)0.0012 (4)0.0044 (4)0.0005 (4)
O10.0303 (5)0.0472 (6)0.0171 (4)0.0023 (4)0.0094 (4)0.0011 (4)
O20.0179 (4)0.0298 (5)0.0316 (5)0.0017 (3)0.0015 (4)0.0023 (4)
C10.0220 (6)0.0245 (6)0.0178 (5)0.0021 (4)0.0055 (4)0.0008 (4)
C20.0206 (6)0.0270 (6)0.0194 (5)0.0007 (5)0.0016 (4)0.0024 (4)
C30.0165 (5)0.0260 (6)0.0250 (6)0.0013 (4)0.0040 (5)0.0009 (5)
C3A0.0183 (6)0.0187 (5)0.0204 (6)0.0006 (4)0.0065 (4)0.0011 (4)
C40.0201 (6)0.0238 (6)0.0267 (6)0.0010 (4)0.0112 (5)0.0032 (5)
C50.0255 (6)0.0229 (6)0.0220 (6)0.0029 (5)0.0130 (5)0.0027 (4)
C5A0.0228 (6)0.0174 (5)0.0189 (5)0.0016 (4)0.0077 (5)0.0009 (4)
C60.0296 (6)0.0231 (6)0.0177 (6)0.0016 (5)0.0073 (5)0.0001 (4)
C70.0264 (6)0.0248 (6)0.0180 (5)0.0000 (5)0.0011 (5)0.0005 (4)
C80.0202 (6)0.0172 (5)0.0231 (6)0.0003 (4)0.0026 (5)0.0009 (4)
C8A0.0174 (5)0.0151 (5)0.0189 (6)0.0007 (4)0.0065 (4)0.0005 (4)
C8B0.0177 (6)0.0157 (5)0.0176 (5)0.0007 (4)0.0063 (4)0.0001 (4)
C90.0188 (5)0.0225 (6)0.0236 (6)0.0034 (4)0.0077 (4)0.0019 (4)
C100.0195 (6)0.0290 (6)0.0254 (6)0.0010 (5)0.0107 (5)0.0003 (5)
C110.0190 (5)0.0226 (6)0.0216 (5)0.0019 (4)0.0081 (4)0.0011 (4)
Geometric parameters (Å, º) top
N1—C11.3866 (16)C5—C5A1.4107 (17)
N1—C8B1.3987 (15)C5—H50.9600
N1—C111.4795 (14)C5A—C8A1.4044 (16)
N2—C81.3929 (16)C5A—C61.4385 (17)
N2—C8A1.4005 (15)C6—C71.3420 (18)
N2—C91.4779 (14)C6—H60.9600
O1—C11.2358 (15)C7—C81.4512 (18)
O2—C81.2364 (15)C7—H70.9600
C1—C21.4531 (17)C8A—C8B1.4264 (17)
C2—C31.3443 (17)C9—C101.5165 (17)
C2—H20.9600C9—H9A0.9600
C3—C3A1.4361 (17)C9—H9B0.9600
C3—H30.9600C10—C111.5176 (16)
C3A—C8B1.4048 (16)C10—H10A0.9600
C3A—C41.4124 (17)C10—H10B0.9600
C4—C51.3684 (18)C11—H11A0.9600
C4—H40.9600C11—H11B0.9600
C1—N1—C8B122.61 (10)C6—C7—C8122.03 (11)
C1—N1—C11117.18 (10)C6—C7—H7119.0
C8B—N1—C11118.94 (9)C8—C7—H7119.0
C8—N2—C8A122.35 (10)O2—C8—N2120.71 (11)
C8—N2—C9117.07 (9)O2—C8—C7123.00 (11)
C8A—N2—C9118.93 (9)N2—C8—C7116.25 (11)
O1—C1—N1120.68 (11)N2—C8A—C5A119.61 (10)
O1—C1—C2122.76 (11)N2—C8A—C8B122.17 (10)
N1—C1—C2116.50 (10)C5A—C8A—C8B118.19 (11)
C3—C2—C1121.12 (11)N1—C8B—C3A119.36 (10)
C3—C2—H2119.4N1—C8B—C8A121.94 (10)
C1—C2—H2119.4C3A—C8B—C8A118.68 (11)
C2—C3—C3A121.42 (11)N2—C9—C10112.13 (10)
C2—C3—H3119.3N2—C9—H9A109.2
C3A—C3—H3119.3C10—C9—H9A109.2
C8B—C3A—C4120.34 (11)N2—C9—H9B109.2
C8B—C3A—C3117.73 (11)C10—C9—H9B109.2
C4—C3A—C3121.91 (11)H9A—C9—H9B107.9
C5—C4—C3A119.98 (11)C9—C10—C11109.44 (9)
C5—C4—H4120.0C9—C10—H10A109.8
C3A—C4—H4120.0C11—C10—H10A109.8
C4—C5—C5A120.08 (11)C9—C10—H10B109.8
C4—C5—H5120.0C11—C10—H10B109.8
C5A—C5—H5120.0H10A—C10—H10B108.2
C8A—C5A—C5120.67 (11)N1—C11—C10112.49 (10)
C8A—C5A—C6118.17 (11)N1—C11—H11A109.1
C5—C5A—C6121.14 (11)C10—C11—H11A109.1
C7—C6—C5A120.61 (11)N1—C11—H11B109.1
C7—C6—H6119.7C10—C11—H11B109.1
C5A—C6—H6119.7H11A—C11—H11B107.8
C8B—N1—C1—O1178.75 (11)C8—N2—C8A—C8B172.78 (10)
C11—N1—C1—O114.27 (16)C9—N2—C8A—C8B22.26 (15)
C8B—N1—C1—C23.94 (16)C5—C5A—C8A—N2168.25 (11)
C11—N1—C1—C2163.05 (10)C6—C5A—C8A—N29.93 (15)
O1—C1—C2—C3172.18 (12)C5—C5A—C8A—C8B9.86 (16)
N1—C1—C2—C35.07 (17)C6—C5A—C8A—C8B171.97 (10)
C1—C2—C3—C3A5.67 (19)C1—N1—C8B—C3A12.22 (16)
C2—C3—C3A—C8B2.60 (17)C11—N1—C8B—C3A154.55 (10)
C2—C3—C3A—C4175.74 (11)C1—N1—C8B—C8A169.50 (10)
C8B—C3A—C4—C51.19 (17)C11—N1—C8B—C8A23.73 (15)
C3—C3A—C4—C5177.11 (11)C4—C3A—C8B—N1167.08 (10)
C3A—C4—C5—C5A8.16 (17)C3—C3A—C8B—N111.29 (16)
C4—C5—C5A—C8A2.53 (17)C4—C3A—C8B—C8A11.25 (16)
C4—C5—C5A—C6175.58 (11)C3—C3A—C8B—C8A170.38 (10)
C8A—C5A—C6—C72.72 (17)N2—C8A—C8B—N120.18 (16)
C5—C5A—C6—C7175.44 (11)C5A—C8A—C8B—N1161.76 (10)
C5A—C6—C7—C85.58 (18)N2—C8A—C8B—C3A161.53 (11)
C8A—N2—C8—O2178.52 (10)C5A—C8A—C8B—C3A16.53 (15)
C9—N2—C8—O213.30 (16)C8—N2—C9—C10109.99 (11)
C8A—N2—C8—C71.04 (16)C8A—N2—C9—C1084.27 (12)
C9—N2—C8—C7164.18 (10)N2—C9—C10—C1144.99 (13)
C6—C7—C8—O2170.97 (12)C1—N1—C11—C10108.30 (11)
C6—C7—C8—N26.44 (17)C8B—N1—C11—C1084.22 (12)
C8—N2—C8A—C5A9.19 (16)C9—C10—C11—N142.52 (13)
C9—N2—C8A—C5A155.77 (10)

Experimental details

Crystal data
Chemical formulaC15H12N2O2
Mr252.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)158
a, b, c (Å)9.1853 (18), 13.931 (3), 9.4956 (19)
β (°) 111.14 (3)
V3)1133.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.46 × 0.38
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.952, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
8367, 2309, 2115
Rint0.016
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.06
No. of reflections2309
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Pakistan Science Foundation for financial support.

References

First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationNadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269–1286  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds