organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-1-Methyl-2,6-distyrylpyridinium iodide

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: pcrooks@uky.edu

(Received 3 March 2010; accepted 18 May 2010; online 26 June 2010)

In the title compound, C22H20N+·I, the dihedral angles between the central pyridine ring and two outer benzene rings are 15.30 (10) and 11.82 (11)°. There are inter­molecular ππ stacking inter­actions between the nearest phenyl ring over an inversion-related pyridyl ring, the shortest centroid–centroid distance being 3.672 (3) Å. The crystal structure of the compound indicates the 2,6-distyryl substituents have an E configuration.

Related literature

For the conventional synthesis, see: Stanek et al. (1952[Stanek, J., Hebky, J. & Zverina, V. (1952). Chem. Listy. 46, 735-736.]). For the activity of related compounds, see Zheng et al. (2005[Zheng, G., Dwoskin, L. P., Deaciuc, A. G., Norrholm, S. D. & Crooks, P. A. (2005). J. Med. Chem. 48, 5551-5560.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N+·I

  • Mr = 425.29

  • Monoclinic, C 2/c

  • a = 18.7309 (4) Å

  • b = 9.5687 (2) Å

  • c = 19.9829 (4) Å

  • β = 90.279 (1)°

  • V = 3581.50 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 14.04 mm−1

  • T = 90 K

  • 0.18 × 0.14 × 0.08 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.211, Tmax = 0.400

  • 24972 measured reflections

  • 3303 independent reflections

  • 3286 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.055

  • S = 1.09

  • 3303 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local procedures.

Supporting information


Comment top

In continuation of our work on the lobeline analogues, and structure-affinity relationships of novel ligands for the vesicular monoamine transporter (Zheng et al., 2005), we have undertaken the design, synthesis and structural analysis of a series of phenyl substituted N-alkyl distyrylpyridine analogs. The primary reasons for the X-ray analysis of the title compound was to confirm the geometry of 2,6-distyryl groups and to obtain detailed information on the molecular structure. This information will be useful in structure-activity relationship (SAR) studies. The title compound was prepared by the reaction of N-methyl, 2,6-lutidine iodide with benzaldehyde in the presence of pyrrolidine in ethanol under microwave irradiation at 25-29 W power level and at 130 °C for 3 minutes (Biotage microwave initiator). The compound was recrystallized from ethanol. The molecular structure and the atom-numbering scheme are shown in Fig.1. The X-ray studies revealed that the 2,6-distyryl substituents in the title compound both have E geometry. The central pyridine ring makes a dihedral angle of 15.30 (10)° and 11.82 (11)° with the adjacent phenyl rings.

Related literature top

For conventional synthesis of the title compound?, see: Stanek et al. (1952). For the activity of related compounds, see Zheng et al. (2005).

Experimental top

A mixture of N-methyl, 2,6-lutidine iodide (0.249 g, 1.0 mmol), benzaldehyde (0.300 g, 2.5 mmol) and pyrrolidine (6 µl) in ethanol (2 ml) was placed in a microwave-ready pressure vial equipped with a stirbar and irradiated in a Biotage microwave initiator for 3 minutes with the temperature set at 130 °C, at a power range of 25-29 W at 5 bar pressure. The cooled reaction mixture was taken out of the initiator, diluted with ethyl acetate, and filtered to afford a crude yellow solid. Crystallization from alcohol produced a yellow crystalline product of N-methyl-2,6-(E)distyrylpyridinium iodide that was suitable for X-ray analysis. 1H NMR (DMSO d6): δ 4.28 (s, 3H), 7.47-7.49 (d, J=6 Hz, 4H), 7.62-7.27 (dd, J=30.3 Hz, J=15.9 Hz, 6H), 7.848-7.872 (d, J=7.2 Hz, 4H), 8.26-8.29 (m, 2H), 8.39-8.44 (t, J=7.8 Hz, 1H); 13C NMR (DMSO d6): δ 41.97, 119.09, 124.02, 128.40, 128.91, 130.39, 134.87, 142.22, 143.11, 149.88, 153.10.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.95 Å (CArH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(E,E)-1-Methyl-2,6-distyrylpyridinium iodide top
Crystal data top
C22H20N+·IF(000) = 1696
Mr = 425.29Dx = 1.577 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 9883 reflections
a = 18.7309 (4) Åθ = 4.4–68.5°
b = 9.5687 (2) ŵ = 14.04 mm1
c = 19.9829 (4) ÅT = 90 K
β = 90.279 (1)°Shard, yellow
V = 3581.50 (13) Å30.18 × 0.14 × 0.08 mm
Z = 8
Data collection top
Bruker X8 Proteum
diffractometer
3303 independent reflections
Radiation source: fine-focus rotating anode3286 reflections with I > 2σ(I)
Graded multilayer optics monochromatorRint = 0.043
Detector resolution: 5.6 pixels mm-1θmax = 68.5°, θmin = 4.4°
ϕ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS in APEX2; Bruker, 2001)
k = 1111
Tmin = 0.211, Tmax = 0.400l = 2424
24972 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0309P)2 + 5.1348P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.003
3303 reflectionsΔρmax = 0.58 e Å3
219 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000067 (15)
Crystal data top
C22H20N+·IV = 3581.50 (13) Å3
Mr = 425.29Z = 8
Monoclinic, C2/cCu Kα radiation
a = 18.7309 (4) ŵ = 14.04 mm1
b = 9.5687 (2) ÅT = 90 K
c = 19.9829 (4) Å0.18 × 0.14 × 0.08 mm
β = 90.279 (1)°
Data collection top
Bruker X8 Proteum
diffractometer
3303 independent reflections
Absorption correction: multi-scan
(SADABS in APEX2; Bruker, 2001)
3286 reflections with I > 2σ(I)
Tmin = 0.211, Tmax = 0.400Rint = 0.043
24972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.09Δρmax = 0.58 e Å3
3303 reflectionsΔρmin = 0.49 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.157566 (6)0.613743 (12)0.396017 (5)0.01533 (8)
N10.38671 (8)0.46130 (16)0.46816 (7)0.0115 (3)
C10.36127 (12)0.60507 (19)0.45527 (12)0.0192 (5)
H1A0.40140.66340.44100.029*
H1B0.34070.64370.49630.029*
H1C0.32480.60340.41990.029*
C20.44830 (10)0.4136 (2)0.43884 (9)0.0133 (4)
C30.47346 (10)0.2818 (2)0.45649 (9)0.0153 (4)
H30.51640.24770.43740.018*
C40.43651 (10)0.2005 (2)0.50154 (9)0.0146 (4)
H40.45440.11120.51390.018*
C50.37368 (10)0.24873 (19)0.52856 (9)0.0136 (4)
H50.34770.19150.55880.016*
C60.34807 (11)0.37993 (18)0.51204 (10)0.0120 (4)
C70.28002 (10)0.4316 (2)0.53757 (9)0.0133 (4)
H70.25540.50260.51350.016*
C80.25134 (11)0.38157 (18)0.59407 (10)0.0146 (4)
H80.27940.31770.61940.018*
C90.18083 (10)0.4165 (2)0.62012 (9)0.0139 (4)
C100.15174 (11)0.3314 (2)0.67007 (10)0.0177 (4)
H100.17950.25760.68840.021*
C110.08281 (11)0.3536 (2)0.69312 (10)0.0191 (4)
H110.06360.29450.72670.023*
C120.04199 (10)0.4616 (2)0.66730 (10)0.0180 (4)
H120.00550.47580.68230.022*
C130.07150 (11)0.5492 (2)0.61904 (9)0.0169 (4)
H130.04420.62500.60210.020*
C140.13969 (10)0.5276 (2)0.59548 (9)0.0154 (4)
H140.15880.58820.56250.018*
C150.48534 (11)0.5004 (2)0.38947 (10)0.0189 (4)
H150.46370.58580.37600.023*
C160.54716 (11)0.4660 (2)0.36280 (10)0.0183 (4)
H160.56640.37840.37610.022*
C170.58969 (10)0.5469 (2)0.31504 (9)0.0150 (4)
C180.64612 (11)0.4793 (2)0.28280 (10)0.0168 (4)
H180.65460.38280.29090.020*
C190.68995 (11)0.5521 (2)0.23897 (10)0.0188 (4)
H190.72730.50470.21630.023*
C200.67921 (11)0.6936 (2)0.22840 (10)0.0190 (4)
H200.70940.74350.19870.023*
C210.62407 (11)0.7629 (2)0.26133 (10)0.0209 (4)
H210.61730.86030.25470.025*
C220.57920 (11)0.6895 (2)0.30369 (10)0.0171 (4)
H220.54100.73660.32520.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01676 (10)0.01507 (10)0.01419 (10)0.00358 (4)0.00364 (6)0.00323 (4)
N10.0131 (7)0.0105 (7)0.0109 (7)0.0004 (6)0.0008 (6)0.0004 (6)
C10.0188 (11)0.0122 (10)0.0267 (12)0.0042 (7)0.0086 (9)0.0059 (7)
C20.0133 (9)0.0154 (9)0.0113 (9)0.0005 (7)0.0013 (7)0.0029 (7)
C30.0151 (9)0.0161 (9)0.0148 (9)0.0033 (7)0.0025 (7)0.0012 (7)
C40.0179 (9)0.0114 (8)0.0145 (9)0.0010 (7)0.0013 (7)0.0004 (7)
C50.0169 (9)0.0126 (9)0.0112 (8)0.0013 (7)0.0007 (7)0.0001 (7)
C60.0133 (10)0.0146 (9)0.0080 (9)0.0014 (6)0.0005 (7)0.0011 (6)
C70.0144 (9)0.0119 (9)0.0134 (9)0.0014 (7)0.0010 (7)0.0005 (7)
C80.0148 (10)0.0155 (10)0.0136 (10)0.0006 (7)0.0004 (8)0.0013 (6)
C90.0154 (9)0.0166 (9)0.0098 (9)0.0011 (8)0.0006 (7)0.0006 (7)
C100.0181 (10)0.0192 (10)0.0156 (9)0.0010 (8)0.0013 (7)0.0041 (8)
C110.0191 (10)0.0238 (10)0.0145 (9)0.0037 (9)0.0046 (8)0.0016 (8)
C120.0150 (9)0.0234 (10)0.0156 (9)0.0009 (8)0.0028 (7)0.0048 (8)
C130.0195 (9)0.0175 (9)0.0137 (9)0.0047 (8)0.0009 (7)0.0020 (7)
C140.0200 (10)0.0156 (9)0.0106 (9)0.0003 (8)0.0029 (7)0.0003 (7)
C150.0223 (10)0.0150 (9)0.0193 (10)0.0041 (8)0.0063 (8)0.0037 (8)
C160.0204 (10)0.0139 (9)0.0208 (10)0.0013 (8)0.0062 (8)0.0020 (8)
C170.0152 (9)0.0181 (10)0.0117 (9)0.0004 (8)0.0008 (7)0.0001 (7)
C180.0194 (10)0.0149 (9)0.0161 (9)0.0012 (8)0.0036 (7)0.0002 (7)
C190.0190 (10)0.0222 (10)0.0154 (9)0.0005 (8)0.0056 (8)0.0016 (8)
C200.0212 (10)0.0224 (10)0.0133 (9)0.0019 (8)0.0042 (7)0.0035 (8)
C210.0257 (11)0.0187 (10)0.0184 (10)0.0025 (8)0.0022 (8)0.0049 (8)
C220.0177 (9)0.0184 (10)0.0151 (9)0.0042 (8)0.0031 (7)0.0018 (7)
Geometric parameters (Å, º) top
N1—C21.374 (2)C11—C121.384 (3)
N1—C61.380 (2)C11—H110.9500
N1—C11.478 (2)C12—C131.394 (3)
C1—H1A0.9800C12—H120.9500
C1—H1B0.9800C13—C141.379 (3)
C1—H1C0.9800C13—H130.9500
C2—C31.391 (3)C14—H140.9500
C2—C151.467 (3)C15—C161.319 (3)
C3—C41.379 (3)C15—H150.9500
C3—H30.9500C16—C171.467 (3)
C4—C51.377 (3)C16—H160.9500
C4—H40.9500C17—C221.397 (3)
C5—C61.383 (3)C17—C181.399 (3)
C5—H50.9500C18—C191.391 (3)
C6—C71.461 (3)C18—H180.9500
C7—C81.341 (3)C19—C201.385 (3)
C7—H70.9500C19—H190.9500
C8—C91.461 (3)C20—C211.395 (3)
C8—H80.9500C20—H200.9500
C9—C101.401 (3)C21—C221.387 (3)
C9—C141.401 (3)C21—H210.9500
C10—C111.389 (3)C22—H220.9500
C10—H100.9500
C2—N1—C6121.83 (16)C12—C11—C10120.22 (19)
C2—N1—C1120.35 (16)C12—C11—H11119.9
C6—N1—C1117.78 (16)C10—C11—H11119.9
N1—C1—H1A109.5C11—C12—C13119.12 (18)
N1—C1—H1B109.5C11—C12—H12120.4
H1A—C1—H1B109.5C13—C12—H12120.4
N1—C1—H1C109.5C14—C13—C12121.16 (18)
H1A—C1—H1C109.5C14—C13—H13119.4
H1B—C1—H1C109.5C12—C13—H13119.4
N1—C2—C3118.49 (17)C13—C14—C9120.16 (18)
N1—C2—C15119.95 (17)C13—C14—H14119.9
C3—C2—C15121.55 (17)C9—C14—H14119.9
C4—C3—C2120.45 (18)C16—C15—C2123.32 (18)
C4—C3—H3119.8C16—C15—H15118.3
C2—C3—H3119.8C2—C15—H15118.3
C5—C4—C3119.95 (18)C15—C16—C17127.73 (19)
C5—C4—H4120.0C15—C16—H16116.1
C3—C4—H4120.0C17—C16—H16116.1
C4—C5—C6120.46 (17)C22—C17—C18118.89 (17)
C4—C5—H5119.8C22—C17—C16122.98 (17)
C6—C5—H5119.8C18—C17—C16118.00 (18)
N1—C6—C5118.76 (17)C19—C18—C17120.53 (19)
N1—C6—C7119.48 (16)C19—C18—H18119.7
C5—C6—C7121.71 (17)C17—C18—H18119.7
C8—C7—C6121.80 (18)C20—C19—C18120.00 (18)
C8—C7—H7119.1C20—C19—H19120.0
C6—C7—H7119.1C18—C19—H19120.0
C7—C8—C9125.79 (18)C19—C20—C21120.00 (18)
C7—C8—H8117.1C19—C20—H20120.0
C9—C8—H8117.1C21—C20—H20120.0
C10—C9—C14118.44 (18)C22—C21—C20119.98 (19)
C10—C9—C8118.45 (18)C22—C21—H21120.0
C14—C9—C8123.05 (17)C20—C21—H21120.0
C11—C10—C9120.86 (19)C21—C22—C17120.56 (18)
C11—C10—H10119.6C21—C22—H22119.7
C9—C10—H10119.6C17—C22—H22119.7
C6—N1—C2—C32.8 (3)C8—C9—C10—C11175.20 (18)
C1—N1—C2—C3174.87 (18)C9—C10—C11—C120.6 (3)
C6—N1—C2—C15176.36 (17)C10—C11—C12—C131.3 (3)
C1—N1—C2—C156.0 (3)C11—C12—C13—C141.8 (3)
N1—C2—C3—C41.1 (3)C12—C13—C14—C90.2 (3)
C15—C2—C3—C4178.04 (18)C10—C9—C14—C131.7 (3)
C2—C3—C4—C51.0 (3)C8—C9—C14—C13175.49 (18)
C3—C4—C5—C61.5 (3)N1—C2—C15—C16175.08 (19)
C2—N1—C6—C52.3 (3)C3—C2—C15—C165.8 (3)
C1—N1—C6—C5175.42 (18)C2—C15—C16—C17177.77 (19)
C2—N1—C6—C7175.13 (17)C15—C16—C17—C2217.0 (3)
C1—N1—C6—C77.1 (3)C15—C16—C17—C18167.2 (2)
C4—C5—C6—N10.1 (3)C22—C17—C18—C191.5 (3)
C4—C5—C6—C7177.27 (18)C16—C17—C18—C19177.53 (18)
N1—C6—C7—C8158.92 (18)C17—C18—C19—C201.9 (3)
C5—C6—C7—C823.7 (3)C18—C19—C20—C210.5 (3)
C6—C7—C8—C9173.77 (18)C19—C20—C21—C221.2 (3)
C7—C8—C9—C10164.66 (19)C20—C21—C22—C171.5 (3)
C7—C8—C9—C1412.5 (3)C18—C17—C22—C210.2 (3)
C14—C9—C10—C112.1 (3)C16—C17—C22—C21175.62 (19)

Experimental details

Crystal data
Chemical formulaC22H20N+·I
Mr425.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)18.7309 (4), 9.5687 (2), 19.9829 (4)
β (°) 90.279 (1)
V3)3581.50 (13)
Z8
Radiation typeCu Kα
µ (mm1)14.04
Crystal size (mm)0.18 × 0.14 × 0.08
Data collection
DiffractometerBruker X8 Proteum
diffractometer
Absorption correctionMulti-scan
(SADABS in APEX2; Bruker, 2001)
Tmin, Tmax0.211, 0.400
No. of measured, independent and
observed [I > 2σ(I)] reflections
24972, 3303, 3286
Rint0.043
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.09
No. of reflections3303
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.49

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and local procedures.

 

Acknowledgements

This investigation was supported by the NSF MRI grant CHE 0319176 (to SP). We thank Dr Greg Elliott for providing the microwave facilities.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanek, J., Hebky, J. & Zverina, V. (1952). Chem. Listy. 46, 735–736.  CAS Google Scholar
First citationZheng, G., Dwoskin, L. P., Deaciuc, A. G., Norrholm, S. D. & Crooks, P. A. (2005). J. Med. Chem. 48, 5551–5560.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds