metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[5,10,15,20-Tetra­kis(4-tol­yl)porphyrin]zinc(II) di­chloro­methane solvate

aDepartment of Chemistry, Austin College, 900 North Grand, Sherman, TX 75090-4400, USA, and bDepartment of Chemistry, University of North Texas, Denton, TX 76203-5017, USA
*Correspondence e-mail: sgould@austincollege.edu

(Received 25 April 2010; accepted 26 May 2010; online 5 June 2010)

In the title complex, [Zn(C48H36N4)]·CH2Cl2, the ZnII atom lies on an inversion center and the dichloro­methane solvent mol­ecule is disordered around an inversion center. The tolyl substituents are twisted compared to the central aromatic ring system of the porphyrin, similar to what is seen in previously published structures of this molecule [Dastidar & Goldberg (1996[Dastidar, P. & Goldberg, I. (1996). Acta Cryst. C52, 1976-1980.]). Acta Cryst. C52, 1976–1980]. The dihedral angles between the mean planes of the tolyl rings and the central ring are 66.98 (6) and 60.40 (6)°.

Related literature

For other solvates of this mol­ecule see: Dastidar & Goldberg (1996[Dastidar, P. & Goldberg, I. (1996). Acta Cryst. C52, 1976-1980.]). For similar structures of ligand-bridged porphyrin sandwich-type structures, see: Diskin-Posner et al. (2002[Diskin-Posner, Y., Patra, G. K. & Goldberg, I. (2002). CrystEngComm, 4, 296-301.]); Mak et al. (1998[Mak, C. C., Bampos, N. & Sanders, J. K. M. (1998). Angew. Chem. Int. Ed. 37, 3020-3023.]); Kieran et al. (2005[Kieran, A. L., Pascu, S. I., Jarrosson, T. & Sanders, J. K. M. (2005). Chem. Commun. pp. 1276-1279.]); Dastidar et al. (1996[Dastidar, P., Krupitsky, H., Stein, Z. & Goldberg, I. (1996). J. Incl. Phen. Mol. Recogn. Chem. 24, 241-262.]). For the synthesis of the title compound, see: Adler et al. (1967[Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476-477.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C48H36N4)]·CH2Cl2

  • Mr = 819.10

  • Monoclinic, P 21 /c

  • a = 14.349 (2) Å

  • b = 8.5273 (14) Å

  • c = 15.637 (3) Å

  • β = 94.995 (2)°

  • V = 1906.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 100 K

  • 0.16 × 0.13 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.930

  • 16249 measured reflections

  • 3901 independent reflections

  • 3533 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.094

  • S = 1.00

  • 3901 reflections

  • 261 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −1.23 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

While pursing ligand bridged porphyrin sandwich-type supramolecular structures, similar to those created by Diskin-Posner et al. (2002), Mak et al. (1998) and Kieran et al. (2005), we sought to crystallize zinc 5,10,15,20-tetrakis(4'-tolyl)porphyrin with pyrazine. The resulting deep red crystals that formed were found not to contain any pyrazine, but contained a well ordered porphyrin structure different than those previously published (Dastidar & Goldberg, 1996). The role of the pyrazine in the crystal deposition is unknown and will be explored further as the same crystals can not be obtained without the compound being present.

The title porphyrin (Figure 1) has a zinc atom located at the center of the porphyrin framework in near exact planarity to the porphyrin. The tolyl substituents are angled compared to the central aromatic ring of the porphyrin, similar to what is seen in previously published structures (Dastidar & Goldberg, 1996). The dihedral angles between the mean planes of the peripheral rings to the central ring are 66.98 (6) and 60.40 (6) °.

Related literature top

For other solvates of this molecule see: Dastidar & Goldberg (1996). For similar structures of ligand-bridged porphyrin sandwich-type structures, see: Diskin-Posner et al. (2002); Mak et al. (1998); Kieran et al. (2005); Dastidar et al. (1996). For the synthesis of the title compound, see: Adler et al. (1967). .

Experimental top

The synthesis of zinc 5,10,15,20-tetrakis(4'-tolyl)porphyrin was carried out according literature procedures (Adler et al., 1967). Dark red crystals were grown by liquid diffusion of methanol into a dichloromethane solution containing 20 mg of zinc 5,10,15,20-tetrakis(4'- tolyl)porphyrin and 2 mg of pyrazine.

Refinement top

The dichloromethane solvent molecule is disordered around a center of inversion. Non-hydrogen atoms were refined anisotropically with an occupation factor of 0.5 for C and 1.0 for Cl. All C-bound H atoms were placed in idealized positions (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms. H atoms were constrained so that Uiso(H) were equal to 1.2Ueq or 1.5Ueq of their respective parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of zinc 5,10,15,20-tetrakis(4'-tolyl)porphyrin (50% probability displacement ellipsoids). Unlabled atoms are related to labeled atoms by inversion symmetry.
[5,10,15,20-Tetrakis(4-tolyl)porphyrin]zinc(II) dichloromethane solvate top
Crystal data top
[Zn(C48H36N4)]·CH2Cl2F(000) = 848
Mr = 819.10Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8831 reflections
a = 14.349 (2) Åθ = 2.6–26.1°
b = 8.5273 (14) ŵ = 0.83 mm1
c = 15.637 (3) ÅT = 100 K
β = 94.995 (2)°Block, red
V = 1906.1 (5) Å30.16 × 0.13 × 0.09 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
3901 independent reflections
Radiation source: fine-focus sealed tube3533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: numerical
(SADABS; Bruker, 2001)
h = 1717
Tmin = 0.880, Tmax = 0.930k = 1010
16249 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.020P)2 + 5.P]
where P = (Fo2 + 2Fc2)/3
3901 reflections(Δ/σ)max = 0.002
261 parametersΔρmax = 0.95 e Å3
1 restraintΔρmin = 1.23 e Å3
Crystal data top
[Zn(C48H36N4)]·CH2Cl2V = 1906.1 (5) Å3
Mr = 819.10Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.349 (2) ŵ = 0.83 mm1
b = 8.5273 (14) ÅT = 100 K
c = 15.637 (3) Å0.16 × 0.13 × 0.09 mm
β = 94.995 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3901 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2001)
3533 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.930Rint = 0.026
16249 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.094H-atom parameters constrained
S = 1.00Δρmax = 0.95 e Å3
3901 reflectionsΔρmin = 1.23 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.50000.50000.01504 (11)
N10.43558 (13)0.5556 (2)0.38246 (11)0.0164 (4)
N20.37660 (13)0.5259 (2)0.55317 (11)0.0164 (4)
C10.27573 (15)0.6038 (3)0.42370 (14)0.0168 (4)
C20.34261 (16)0.5909 (3)0.36365 (14)0.0170 (4)
C30.32403 (16)0.6157 (3)0.27249 (14)0.0193 (5)
H3A0.26490.63800.24280.023*
C40.40637 (16)0.6012 (3)0.23723 (14)0.0187 (5)
H4A0.41630.61450.17840.022*
C50.47622 (16)0.5618 (3)0.30559 (14)0.0167 (4)
C60.57093 (15)0.5358 (3)0.29533 (14)0.0163 (4)
C70.60335 (15)0.5564 (3)0.20727 (14)0.0165 (4)
C80.57431 (16)0.4550 (3)0.14006 (14)0.0182 (5)
H8A0.53220.37210.14960.022*
C90.60651 (16)0.4740 (3)0.05923 (14)0.0197 (5)
H9A0.58610.40360.01430.024*
C100.66818 (16)0.5946 (3)0.04310 (14)0.0208 (5)
C110.69649 (17)0.6956 (3)0.11008 (15)0.0215 (5)
H11A0.73850.77850.10050.026*
C120.66440 (16)0.6775 (3)0.19122 (14)0.0194 (5)
H12A0.68440.74850.23590.023*
C130.7035 (2)0.6148 (3)0.04444 (15)0.0301 (6)
H13A0.75020.69890.04220.045*
H13B0.65110.64200.08630.045*
H13C0.73210.51670.06170.045*
C140.29318 (16)0.5754 (3)0.51224 (14)0.0171 (4)
C150.22477 (16)0.5933 (3)0.57396 (14)0.0189 (5)
H15A0.16220.62880.56250.023*
C160.26662 (16)0.5501 (3)0.65116 (14)0.0191 (5)
H16A0.23840.54740.70390.023*
C170.36176 (15)0.5088 (3)0.63887 (14)0.0167 (4)
C180.17871 (15)0.6502 (3)0.39095 (14)0.0181 (5)
C190.16187 (16)0.7945 (3)0.35042 (14)0.0207 (5)
H19A0.21220.86540.34550.025*
C200.07234 (17)0.8357 (3)0.31716 (15)0.0246 (5)
H20A0.06260.93350.28870.030*
C210.00341 (17)0.7362 (3)0.32472 (15)0.0247 (5)
C220.01316 (17)0.5947 (3)0.36693 (15)0.0241 (5)
H22A0.03780.52600.37390.029*
C230.10252 (16)0.5513 (3)0.39923 (15)0.0208 (5)
H23A0.11200.45310.42730.025*
C240.10064 (18)0.7807 (4)0.28820 (18)0.0340 (6)
H24A0.14640.74230.32620.051*
H24B0.11330.73360.23120.051*
H24C0.10530.89510.28350.051*
Cl10.00291 (18)1.13537 (18)0.44337 (11)0.1434 (9)
C1A0.0459 (5)0.9997 (10)0.5120 (5)0.081 (3)0.50
H1AA0.03521.06970.56150.098*0.50
H1AB0.09870.95800.48590.098*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01529 (18)0.01885 (19)0.01128 (17)0.00098 (14)0.00281 (13)0.00119 (14)
N10.0164 (9)0.0193 (9)0.0138 (9)0.0001 (7)0.0031 (7)0.0008 (7)
N20.0166 (9)0.0203 (10)0.0125 (9)0.0004 (7)0.0022 (7)0.0014 (7)
C10.0173 (11)0.0175 (11)0.0157 (10)0.0008 (9)0.0020 (8)0.0009 (9)
C20.0181 (11)0.0176 (11)0.0154 (10)0.0011 (9)0.0014 (8)0.0007 (8)
C30.0199 (11)0.0226 (12)0.0150 (11)0.0003 (9)0.0001 (9)0.0007 (9)
C40.0213 (11)0.0217 (12)0.0132 (10)0.0009 (9)0.0017 (8)0.0010 (9)
C50.0203 (11)0.0165 (11)0.0136 (10)0.0008 (9)0.0026 (8)0.0001 (8)
C60.0192 (11)0.0159 (11)0.0139 (10)0.0013 (8)0.0033 (8)0.0006 (8)
C70.0166 (10)0.0198 (11)0.0133 (10)0.0038 (9)0.0029 (8)0.0020 (8)
C80.0173 (11)0.0202 (11)0.0170 (11)0.0007 (9)0.0007 (8)0.0011 (9)
C90.0211 (11)0.0234 (12)0.0144 (10)0.0034 (9)0.0011 (8)0.0024 (9)
C100.0225 (12)0.0255 (12)0.0150 (11)0.0058 (10)0.0046 (9)0.0034 (9)
C110.0235 (12)0.0219 (12)0.0200 (11)0.0018 (10)0.0064 (9)0.0034 (9)
C120.0218 (11)0.0211 (12)0.0156 (11)0.0004 (9)0.0029 (9)0.0014 (9)
C130.0384 (15)0.0363 (15)0.0172 (12)0.0014 (12)0.0106 (11)0.0014 (11)
C140.0176 (11)0.0179 (11)0.0162 (11)0.0008 (9)0.0034 (8)0.0001 (9)
C150.0165 (11)0.0232 (12)0.0175 (11)0.0014 (9)0.0041 (8)0.0006 (9)
C160.0198 (11)0.0230 (12)0.0151 (10)0.0000 (9)0.0048 (8)0.0008 (9)
C170.0197 (11)0.0172 (11)0.0137 (10)0.0007 (9)0.0044 (8)0.0009 (8)
C180.0173 (11)0.0252 (12)0.0120 (10)0.0014 (9)0.0021 (8)0.0011 (9)
C190.0192 (11)0.0253 (12)0.0177 (11)0.0014 (9)0.0027 (9)0.0022 (9)
C200.0241 (12)0.0301 (13)0.0195 (11)0.0039 (10)0.0020 (9)0.0051 (10)
C210.0183 (11)0.0389 (15)0.0170 (11)0.0026 (10)0.0018 (9)0.0002 (10)
C220.0192 (11)0.0347 (14)0.0186 (11)0.0056 (10)0.0030 (9)0.0002 (10)
C230.0208 (11)0.0237 (12)0.0182 (11)0.0015 (10)0.0033 (9)0.0009 (9)
C240.0191 (13)0.0513 (18)0.0311 (14)0.0039 (12)0.0009 (10)0.0072 (13)
Cl10.272 (3)0.0665 (9)0.1016 (11)0.0678 (12)0.0716 (14)0.0032 (8)
C1A0.038 (4)0.125 (8)0.080 (6)0.025 (5)0.005 (4)0.074 (6)
Geometric parameters (Å, º) top
Zn1—N22.0326 (18)C13—H13A0.9800
Zn1—N2i2.0327 (18)C13—H13B0.9800
Zn1—N12.0401 (18)C13—H13C0.9800
Zn1—N1i2.0402 (18)C14—C151.443 (3)
N1—C21.374 (3)C15—C161.352 (3)
N1—C51.382 (3)C15—H15A0.9500
N2—C141.374 (3)C16—C171.439 (3)
N2—C171.383 (3)C16—H16A0.9500
C1—C21.404 (3)C17—C6i1.401 (3)
C1—C141.406 (3)C18—C231.396 (3)
C1—C181.494 (3)C18—C191.395 (3)
C2—C31.443 (3)C19—C201.389 (3)
C3—C41.352 (3)C19—H19A0.9500
C3—H3A0.9500C20—C211.392 (4)
C4—C51.440 (3)C20—H20A0.9500
C4—H4A0.9500C21—C221.386 (4)
C5—C61.400 (3)C21—C241.509 (3)
C6—C17i1.401 (3)C22—C231.387 (3)
C6—C71.502 (3)C22—H22A0.9500
C7—C121.391 (3)C23—H23A0.9500
C7—C81.396 (3)C24—H24A0.9800
C8—C91.392 (3)C24—H24B0.9800
C8—H8A0.9500C24—H24C0.9800
C9—C101.394 (3)Cl1—C1Aii1.507 (9)
C9—H9A0.9500Cl1—C1A1.688 (8)
C10—C111.389 (3)C1A—C1Aii1.339 (14)
C10—C131.510 (3)C1A—Cl1ii1.507 (9)
C11—C121.396 (3)C1A—H1AA1.0000
C11—H11A0.9500C1A—H1AB0.9592
C12—H12A0.9500
N2—Zn1—N2i180.00 (9)C10—C13—H13C109.5
N2—Zn1—N190.04 (7)H13A—C13—H13C109.5
N2i—Zn1—N189.96 (7)H13B—C13—H13C109.5
N2—Zn1—N1i89.96 (7)N2—C14—C1125.8 (2)
N2i—Zn1—N1i90.04 (7)N2—C14—C15109.68 (19)
N1—Zn1—N1i179.999 (1)C1—C14—C15124.5 (2)
C2—N1—C5106.32 (18)C16—C15—C14107.1 (2)
C2—N1—Zn1126.80 (14)C16—C15—H15A126.5
C5—N1—Zn1126.87 (15)C14—C15—H15A126.5
C14—N2—C17106.40 (18)C15—C16—C17107.5 (2)
C14—N2—Zn1126.70 (14)C15—C16—H16A126.3
C17—N2—Zn1126.74 (15)C17—C16—H16A126.3
C2—C1—C14124.9 (2)N2—C17—C6i125.9 (2)
C2—C1—C18117.52 (19)N2—C17—C16109.37 (19)
C14—C1—C18117.63 (19)C6i—C17—C16124.7 (2)
N1—C2—C1125.5 (2)C23—C18—C19118.0 (2)
N1—C2—C3109.62 (19)C23—C18—C1121.5 (2)
C1—C2—C3124.8 (2)C19—C18—C1120.6 (2)
C4—C3—C2107.3 (2)C20—C19—C18120.7 (2)
C4—C3—H3A126.4C20—C19—H19A119.6
C2—C3—H3A126.4C18—C19—H19A119.6
C3—C4—C5107.2 (2)C19—C20—C21121.2 (2)
C3—C4—H4A126.4C19—C20—H20A119.4
C5—C4—H4A126.4C21—C20—H20A119.4
N1—C5—C6125.5 (2)C22—C21—C20117.9 (2)
N1—C5—C4109.59 (19)C22—C21—C24120.9 (2)
C6—C5—C4124.9 (2)C20—C21—C24121.2 (2)
C5—C6—C17i124.9 (2)C21—C22—C23121.4 (2)
C5—C6—C7117.89 (19)C21—C22—H22A119.3
C17i—C6—C7117.16 (19)C23—C22—H22A119.3
C12—C7—C8118.4 (2)C22—C23—C18120.8 (2)
C12—C7—C6120.2 (2)C22—C23—H23A119.6
C8—C7—C6121.4 (2)C18—C23—H23A119.6
C9—C8—C7120.7 (2)C21—C24—H24A109.5
C9—C8—H8A119.7C21—C24—H24B109.5
C7—C8—H8A119.7H24A—C24—H24B109.5
C8—C9—C10121.1 (2)C21—C24—H24C109.5
C8—C9—H9A119.5H24A—C24—H24C109.5
C10—C9—H9A119.5H24B—C24—H24C109.5
C11—C10—C9118.0 (2)C1Aii—Cl1—C1A49.1 (5)
C11—C10—C13120.9 (2)C1Aii—C1A—Cl1ii72.5 (8)
C9—C10—C13121.1 (2)C1Aii—C1A—Cl158.4 (6)
C10—C11—C12121.3 (2)Cl1ii—C1A—Cl1130.9 (5)
C10—C11—H11A119.4C1Aii—C1A—H1AA90.0
C12—C11—H11A119.4Cl1ii—C1A—H1AA90.0
C7—C12—C11120.6 (2)Cl1—C1A—H1AA90.0
C7—C12—H12A119.7C1Aii—C1A—H1AB132.6
C11—C12—H12A119.7Cl1ii—C1A—H1AB106.5
C10—C13—H13A109.5Cl1—C1A—H1AB106.4
C10—C13—H13B109.5H1AA—C1A—H1AB137.0
H13A—C13—H13B109.5
N2—Zn1—N1—C20.55 (19)C9—C10—C11—C120.1 (4)
N2i—Zn1—N1—C2179.45 (19)C13—C10—C11—C12179.8 (2)
N2—Zn1—N1—C5178.92 (19)C8—C7—C12—C110.7 (3)
N2i—Zn1—N1—C51.08 (19)C6—C7—C12—C11178.6 (2)
N1—Zn1—N2—C144.16 (19)C10—C11—C12—C70.5 (4)
N1i—Zn1—N2—C14175.84 (19)C17—N2—C14—C1178.3 (2)
N1—Zn1—N2—C17178.82 (19)Zn1—N2—C14—C16.2 (3)
N1i—Zn1—N2—C171.18 (19)C17—N2—C14—C151.3 (3)
C5—N1—C2—C1177.5 (2)Zn1—N2—C14—C15174.23 (15)
Zn1—N1—C2—C13.9 (3)C2—C1—C14—N22.4 (4)
C5—N1—C2—C31.6 (3)C18—C1—C14—N2177.3 (2)
Zn1—N1—C2—C3177.08 (15)C2—C1—C14—C15178.1 (2)
C14—C1—C2—N13.0 (4)C18—C1—C14—C152.2 (3)
C18—C1—C2—N1177.3 (2)N2—C14—C15—C161.8 (3)
C14—C1—C2—C3178.1 (2)C1—C14—C15—C16177.8 (2)
C18—C1—C2—C31.5 (3)C14—C15—C16—C171.4 (3)
N1—C2—C3—C42.3 (3)C14—N2—C17—C6i178.2 (2)
C1—C2—C3—C4176.7 (2)Zn1—N2—C17—C6i2.6 (3)
C2—C3—C4—C52.0 (3)C14—N2—C17—C160.4 (3)
C2—N1—C5—C6179.0 (2)Zn1—N2—C17—C16175.12 (15)
Zn1—N1—C5—C62.4 (3)C15—C16—C17—N20.7 (3)
C2—N1—C5—C40.3 (3)C15—C16—C17—C6i177.1 (2)
Zn1—N1—C5—C4178.34 (15)C2—C1—C18—C23118.4 (2)
C3—C4—C5—N11.1 (3)C14—C1—C18—C2361.2 (3)
C3—C4—C5—C6179.6 (2)C2—C1—C18—C1961.1 (3)
N1—C5—C6—C17i3.6 (4)C14—C1—C18—C19119.2 (2)
C4—C5—C6—C17i177.3 (2)C23—C18—C19—C201.9 (3)
N1—C5—C6—C7176.6 (2)C1—C18—C19—C20177.7 (2)
C4—C5—C6—C72.5 (3)C18—C19—C20—C211.3 (4)
C5—C6—C7—C12113.2 (2)C19—C20—C21—C220.3 (4)
C17i—C6—C7—C1267.0 (3)C19—C20—C21—C24179.7 (2)
C5—C6—C7—C867.5 (3)C20—C21—C22—C231.3 (4)
C17i—C6—C7—C8112.3 (2)C24—C21—C22—C23178.7 (2)
C12—C7—C8—C90.6 (3)C21—C22—C23—C180.7 (4)
C6—C7—C8—C9178.7 (2)C19—C18—C23—C220.9 (3)
C7—C8—C9—C100.2 (3)C1—C18—C23—C22178.7 (2)
C8—C9—C10—C110.1 (3)C1Aii—Cl1—C1A—Cl1ii0.0
C8—C9—C10—C13179.7 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C48H36N4)]·CH2Cl2
Mr819.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.349 (2), 8.5273 (14), 15.637 (3)
β (°) 94.995 (2)
V3)1906.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.16 × 0.13 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2001)
Tmin, Tmax0.880, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
16249, 3901, 3533
Rint0.026
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.094, 1.00
No. of reflections3901
No. of parameters261
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 1.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was funded by in part by the National Science Foundation (CHE-0924153) and a chemistry department grant from the Welch Foundation (AD-0007). The X-ray data were collected at the University of North Texas.

References

First citationAdler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476–477.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDastidar, P. & Goldberg, I. (1996). Acta Cryst. C52, 1976–1980.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDastidar, P., Krupitsky, H., Stein, Z. & Goldberg, I. (1996). J. Incl. Phen. Mol. Recogn. Chem. 24, 241–262.  CrossRef CAS Web of Science Google Scholar
First citationDiskin-Posner, Y., Patra, G. K. & Goldberg, I. (2002). CrystEngComm, 4, 296–301.  Web of Science CSD CrossRef CAS Google Scholar
First citationKieran, A. L., Pascu, S. I., Jarrosson, T. & Sanders, J. K. M. (2005). Chem. Commun. pp. 1276–1279.  Web of Science CSD CrossRef Google Scholar
First citationMak, C. C., Bampos, N. & Sanders, J. K. M. (1998). Angew. Chem. Int. Ed. 37, 3020–3023.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds