organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-Di­phenyl­methyl­­idene-2-[(1H-indol-3-yl)methyl­­idene]hydrazine

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 19 May 2010; accepted 31 May 2010; online 5 June 2010)

In the title compound, C22H17N3, the 1H-indole unit is essentially planar, with a dihedral angle of 0.95 (10)° between the pyrrole ring and the fused benzene ring. The dihedral angle between the two phenyl rings is 65.09 (10)°. In the crystal, an inter­molecular N—H⋯N hydrogen bond forms an infinite chain in the b-axis direction.

Related literature

For the synthesis, see: Fleming & Harley-Mason (1961[Fleming, I. & Harley-Mason, J. (1961). J. Chem. Soc. pp. 5560-5561.]). For the crystal structures of some aromatic azines, for example, acetophenone azine, see: Glaser et al. (1995[Glaser, R., Chen, G. S., Anthamatten, M. & Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449-1458.]). For other heterocyclic aldehyde azines, see: Lin et al. (2001[Lin, C.-J., Hwang, W.-S. & Chiang, M. J. (2001). J. Organomet. Chem. 640, 85-92.]). For the crystal structure of symmetrical 1H-Indole-3-carbaldehyde azine, see: Rizal et al. (2008[Rizal, M. R., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o555.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17N3

  • Mr = 323.39

  • Orthorhombic, P n a 21

  • a = 24.1594 (3) Å

  • b = 13.8501 (2) Å

  • c = 5.2173 (1) Å

  • V = 1745.76 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 295 K

  • 0.46 × 0.21 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.796, Tmax = 1.000

  • 8042 measured reflections

  • 2059 independent reflections

  • 1954 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.06

  • 2059 reflections

  • 230 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 (3) 2.18 (2) 3.0069 (19) 159 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is an unsymmetrical indole azine derived from benzophenone, indole-3-carboxaldehyde and hydrazine. Glaser et al., (1995) have reported the crystal structures of some aromatic azines. Lin et al., (2001) have reported heterocyclic aldehyde azines. Rizal et al., (2008) have reported the crystal structure of symmetrical 1H-Indole-3-carbaldehyde azine. Herein, we report the crystal structure of the title compound.

In the title molecule (Scheme I, Fig. 1), C22H17N3, the 1H-indole unit is almost planar, as the pyrrole ring makes a dihedral angle of 0.95 (10)° with the fused benzene ring. The r.m.s. deviation of a mean plane fitted through all non hydrogen atoms of the indole unit is 0.0096 Å; C3 deviates from this plane by 0.015 (1) Å. The dihedral angle between the two phenyl rings of the diphenylmethylene residue is 65.09 (10)°. The crystal structure is stabilized by intermolecular N1—H1···N2(1/2 - x, 1/2 + y, -1/2 + z) hydrogen bond forming an infinite one-dimensional chain in the b-axis direction (Fig. 2).

Related literature top

For the synthesis, see: Fleming & Harley-Mason (1961). For the crystal structures of some aromatic azines, for example, acetophenone azine, see: Glaser et al. (1995). For other heterocyclic aldehyde azines, see: Lin et al. (2001). For the crystal structure of symmetrical 1H-Indole-3-carbaldehyde azine, see: Rizal et al. (2008).

Experimental top

The compound was prepared in accord with literature precedents Fleming & Harley-Mason (1961). The mixture of benzophenone hydrazone (1.96 g, 0.01 mol) and indole-3-carboxaldehyde (2.55 g, 0.01 mol) in ethanol was refluxed for 2 h. The mixture was cooled to room temperature over night. The solid obtained was separated, dried and then recrystallized from absolute ethanol. The yield of isolated product was (1.76 g, 79%).

Refinement top

Owing to the absence of any anamalous scatterers in the molecule, Friedel pairs were merged. The absolute structure in the model was chosen arbitrarily. The N-bound H1 atom was located in a difference Fourier map, and was freely refined. Remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å. Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
(E)-1-Diphenylmethylidene-2-[(1H-indol-3-yl)methylidene]hydrazine top
Crystal data top
C22H17N3Dx = 1.230 Mg m3
Mr = 323.39Melting point: 423 K
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2nCell parameters from 6053 reflections
a = 24.1594 (3) Åθ = 4.9–77.4°
b = 13.8501 (2) ŵ = 0.58 mm1
c = 5.2173 (1) ÅT = 295 K
V = 1745.76 (5) Å3Needle, pale yellow
Z = 40.46 × 0.21 × 0.18 mm
F(000) = 680
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2059 independent reflections
Radiation source: Enhance (Cu) X-ray Source1954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 10.5081 pixels mm-1θmax = 77.6°, θmin = 4.9°
ω scansh = 3027
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1717
Tmin = 0.796, Tmax = 1.000l = 56
8042 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.0189P]
where P = (Fo2 + 2Fc2)/3
2059 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C22H17N3V = 1745.76 (5) Å3
Mr = 323.39Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 24.1594 (3) ŵ = 0.58 mm1
b = 13.8501 (2) ÅT = 295 K
c = 5.2173 (1) Å0.46 × 0.21 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2059 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1954 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 1.000Rint = 0.015
8042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.12 e Å3
2059 reflectionsΔρmin = 0.17 e Å3
230 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25795 (6)0.62655 (10)0.3007 (4)0.0689 (4)
N20.15647 (5)0.26575 (8)0.6043 (3)0.0551 (3)
N30.16478 (5)0.36551 (8)0.6361 (3)0.0550 (4)
C10.20416 (6)0.39405 (10)0.4934 (4)0.0582 (4)
C20.25644 (7)0.52898 (11)0.2923 (4)0.0692 (5)
C30.21904 (6)0.49427 (10)0.4681 (4)0.0578 (4)
C40.15783 (6)0.59044 (12)0.7935 (4)0.0636 (5)
C50.14574 (8)0.68387 (14)0.8692 (5)0.0778 (6)
C60.17085 (8)0.76319 (13)0.7519 (5)0.0794 (7)
C70.20847 (8)0.75255 (11)0.5582 (5)0.0711 (6)
C80.22152 (6)0.65856 (11)0.4834 (4)0.0587 (4)
C90.19622 (5)0.57731 (10)0.5974 (3)0.0540 (4)
C100.11010 (6)0.23275 (9)0.6904 (3)0.0510 (3)
C110.09878 (6)0.12935 (10)0.6271 (3)0.0576 (4)
C120.12405 (8)0.08728 (13)0.4155 (4)0.0715 (6)
C130.11502 (10)0.00994 (14)0.3603 (5)0.0890 (8)
C140.08040 (10)0.06415 (13)0.5133 (6)0.0945 (9)
C150.05508 (10)0.02335 (13)0.7208 (6)0.0891 (8)
C160.06379 (8)0.07414 (11)0.7795 (5)0.0710 (5)
C210.06955 (6)0.28877 (10)0.8444 (3)0.0513 (4)
C220.01336 (6)0.28961 (11)0.7848 (4)0.0609 (4)
C230.02317 (7)0.34404 (14)0.9306 (5)0.0728 (6)
C240.00457 (8)0.39643 (14)1.1386 (4)0.0735 (6)
C250.05106 (8)0.39457 (13)1.2010 (4)0.0686 (5)
C260.08756 (6)0.34155 (11)1.0559 (3)0.0593 (4)
H10.2797 (10)0.6616 (17)0.204 (6)0.089 (7)*
H1A0.224190.348320.401600.0698*
H20.277650.490870.183220.0830*
H40.140800.537870.871520.0764*
H50.120390.694011.000590.0933*
H60.161730.825020.807200.0953*
H70.224680.805750.479480.0853*
H120.146990.124000.310710.0858*
H130.132370.038260.220010.1067*
H140.074250.128850.475040.1133*
H150.031940.060490.823600.1069*
H160.046220.101850.920010.0852*
H220.000290.253610.647070.0731*
H230.060540.345250.887810.0873*
H240.029240.432661.235950.0882*
H250.063820.429301.341650.0823*
H260.124880.340911.099550.0711*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0668 (7)0.0567 (7)0.0833 (9)0.0144 (6)0.0116 (8)0.0021 (8)
N20.0562 (6)0.0416 (5)0.0675 (7)0.0010 (4)0.0022 (6)0.0012 (6)
N30.0535 (5)0.0425 (5)0.0689 (8)0.0018 (4)0.0006 (5)0.0014 (6)
C10.0501 (6)0.0493 (6)0.0751 (10)0.0016 (5)0.0050 (7)0.0012 (7)
C20.0642 (8)0.0578 (8)0.0856 (11)0.0070 (6)0.0161 (9)0.0013 (9)
C30.0483 (6)0.0514 (7)0.0737 (9)0.0034 (5)0.0032 (7)0.0006 (7)
C40.0556 (7)0.0622 (8)0.0731 (10)0.0023 (6)0.0038 (8)0.0011 (8)
C50.0673 (9)0.0766 (10)0.0894 (14)0.0047 (8)0.0079 (9)0.0178 (10)
C60.0784 (10)0.0573 (8)0.1025 (16)0.0033 (7)0.0065 (11)0.0201 (10)
C70.0747 (9)0.0509 (7)0.0877 (12)0.0090 (7)0.0107 (10)0.0036 (8)
C80.0535 (6)0.0529 (7)0.0697 (9)0.0084 (5)0.0072 (7)0.0002 (7)
C90.0445 (6)0.0507 (6)0.0668 (9)0.0037 (5)0.0064 (6)0.0003 (7)
C100.0535 (6)0.0432 (5)0.0562 (7)0.0007 (5)0.0090 (6)0.0058 (6)
C110.0620 (7)0.0449 (6)0.0660 (8)0.0027 (5)0.0177 (7)0.0019 (7)
C120.0800 (10)0.0593 (8)0.0752 (11)0.0023 (7)0.0156 (9)0.0079 (8)
C130.1040 (14)0.0647 (10)0.0982 (16)0.0089 (9)0.0288 (13)0.0240 (11)
C140.1079 (15)0.0465 (8)0.129 (2)0.0049 (9)0.0440 (16)0.0108 (11)
C150.1001 (14)0.0516 (9)0.1155 (19)0.0200 (9)0.0224 (13)0.0108 (11)
C160.0786 (10)0.0512 (7)0.0833 (11)0.0120 (7)0.0120 (10)0.0077 (8)
C210.0551 (7)0.0453 (6)0.0535 (7)0.0041 (5)0.0037 (6)0.0089 (5)
C220.0557 (7)0.0612 (7)0.0658 (8)0.0039 (6)0.0070 (7)0.0032 (8)
C230.0559 (7)0.0787 (10)0.0837 (12)0.0040 (7)0.0001 (9)0.0088 (10)
C240.0738 (10)0.0731 (9)0.0737 (11)0.0080 (8)0.0134 (9)0.0029 (9)
C250.0808 (10)0.0693 (9)0.0557 (8)0.0044 (8)0.0030 (8)0.0016 (8)
C260.0596 (7)0.0627 (8)0.0556 (7)0.0049 (6)0.0055 (6)0.0036 (7)
Geometric parameters (Å, º) top
N1—C21.353 (2)C21—C261.393 (2)
N1—C81.371 (3)C21—C221.393 (2)
N2—N31.4060 (16)C22—C231.388 (3)
N2—C101.2906 (19)C23—C241.381 (3)
N3—C11.271 (2)C24—C251.383 (3)
N1—H10.88 (3)C25—C261.375 (2)
C1—C31.440 (2)C1—H1A0.9300
C2—C31.374 (3)C2—H20.9300
C3—C91.443 (2)C4—H40.9300
C4—C51.384 (3)C5—H50.9300
C4—C91.393 (2)C6—H60.9300
C5—C61.396 (3)C7—H70.9300
C6—C71.367 (3)C12—H120.9300
C7—C81.395 (2)C13—H130.9300
C8—C91.412 (2)C14—H140.9300
C10—C211.486 (2)C15—H150.9300
C10—C111.4949 (19)C16—H160.9300
C11—C121.390 (3)C22—H220.9300
C11—C161.390 (3)C23—H230.9300
C12—C131.394 (3)C24—H240.9300
C13—C141.379 (3)C25—H250.9300
C14—C151.366 (4)C26—H260.9300
C15—C161.400 (2)
N1···N2i3.0069 (19)C12···H2ii3.0600
N2···N1ii3.0069 (19)C13···H2ii3.0900
N3···C43.226 (2)C14···H6v2.9300
N3···C262.896 (2)C16···H223.0000
N2···H26iii2.9300C21···H162.6800
N2···H1ii2.18 (2)C22···H162.8100
N2···H262.8900H1···N2i2.18 (2)
N2···H122.5000H1···C10i2.84 (2)
N3···H42.7500H1···C11i3.00 (2)
N3···H262.6300H1···C12i2.96 (3)
C2···C12i3.585 (3)H1A···C6viii2.9000
C4···N33.226 (2)H1A···C7viii2.7600
C6···C14iv3.470 (3)H1A···H7viii2.5900
C12···C2ii3.585 (3)H2···C12i3.0600
C13···C16iii3.474 (4)H2···C13i3.0900
C14···C6v3.470 (3)H4···N32.7500
C16···C223.224 (2)H5···H23ix2.5400
C16···C13vi3.474 (4)H6···C14iv2.9300
C22···C25iii3.496 (3)H7···H1Avii2.5900
C22···C163.224 (2)H12···N22.5000
C25···C22vi3.496 (3)H16···C212.6800
C26···N32.896 (2)H16···C222.8100
C1···H26iii2.9000H22···C112.9400
C6···H1Avii2.9000H22···C163.0000
C7···H1Avii2.7600H23···H5x2.5400
C10···H1ii2.84 (2)H26···N22.8900
C11···H222.9400H26···N2vi2.9300
C11···H1ii3.00 (2)H26···N32.6300
C12···H1ii2.96 (3)H26···C1vi2.9000
C2—N1—C8109.17 (15)C23—C24—C25119.44 (18)
N3—N2—C10115.52 (12)C24—C25—C26120.24 (18)
N2—N3—C1110.08 (13)C21—C26—C25121.07 (15)
C2—N1—H1123.5 (16)N3—C1—H1A119.00
C8—N1—H1127.4 (17)C3—C1—H1A119.00
N3—C1—C3122.71 (15)N1—C2—H2125.00
N1—C2—C3110.22 (16)C3—C2—H2125.00
C1—C3—C2124.23 (16)C5—C4—H4121.00
C2—C3—C9106.52 (13)C9—C4—H4121.00
C1—C3—C9129.06 (15)C4—C5—H5119.00
C5—C4—C9118.18 (16)C6—C5—H5119.00
C4—C5—C6121.3 (2)C5—C6—H6119.00
C5—C6—C7121.87 (18)C7—C6—H6119.00
C6—C7—C8117.23 (17)C6—C7—H7121.00
C7—C8—C9121.87 (17)C8—C7—H7121.00
N1—C8—C7129.89 (17)C11—C12—H12120.00
N1—C8—C9108.24 (13)C13—C12—H12120.00
C4—C9—C8119.58 (14)C12—C13—H13120.00
C3—C9—C4134.58 (14)C14—C13—H13120.00
C3—C9—C8105.84 (13)C13—C14—H14120.00
N2—C10—C11114.91 (13)C15—C14—H14120.00
N2—C10—C21125.15 (12)C14—C15—H15120.00
C11—C10—C21119.94 (12)C16—C15—H15120.00
C10—C11—C12119.79 (14)C11—C16—H16120.00
C12—C11—C16119.41 (15)C15—C16—H16120.00
C10—C11—C16120.80 (15)C21—C22—H22120.00
C11—C12—C13120.02 (18)C23—C22—H22120.00
C12—C13—C14120.1 (2)C22—C23—H23120.00
C13—C14—C15120.36 (19)C24—C23—H23120.00
C14—C15—C16120.3 (2)C23—C24—H24120.00
C11—C16—C15119.8 (2)C25—C24—H24120.00
C10—C21—C22121.76 (14)C24—C25—H25120.00
C22—C21—C26118.48 (14)C26—C25—H25120.00
C10—C21—C26119.76 (13)C21—C26—H26119.00
C21—C22—C23120.14 (17)C25—C26—H26119.00
C22—C23—C24120.62 (17)
C8—N1—C2—C30.1 (2)C7—C8—C9—C41.2 (3)
C2—N1—C8—C7179.2 (2)N2—C10—C11—C1224.1 (2)
C2—N1—C8—C90.6 (2)N2—C10—C11—C16155.04 (17)
C10—N2—N3—C1164.25 (15)C21—C10—C11—C12156.63 (16)
N3—N2—C10—C11172.86 (13)C21—C10—C11—C1624.3 (2)
N3—N2—C10—C217.9 (2)N2—C10—C21—C22131.69 (18)
N2—N3—C1—C3174.46 (16)N2—C10—C21—C2648.9 (2)
N3—C1—C3—C2171.37 (18)C11—C10—C21—C2249.1 (2)
N3—C1—C3—C93.0 (3)C11—C10—C21—C26130.34 (15)
N1—C2—C3—C1174.67 (17)C10—C11—C12—C13177.96 (18)
N1—C2—C3—C90.8 (2)C16—C11—C12—C131.2 (3)
C1—C3—C9—C46.0 (3)C10—C11—C16—C15178.12 (19)
C1—C3—C9—C8174.06 (18)C12—C11—C16—C151.0 (3)
C2—C3—C9—C4178.90 (18)C11—C12—C13—C140.9 (3)
C2—C3—C9—C81.10 (19)C12—C13—C14—C150.5 (4)
C9—C4—C5—C60.5 (3)C13—C14—C15—C160.4 (4)
C5—C4—C9—C3179.81 (19)C14—C15—C16—C110.6 (4)
C5—C4—C9—C80.2 (2)C10—C21—C22—C23178.96 (16)
C4—C5—C6—C70.2 (4)C26—C21—C22—C231.6 (2)
C5—C6—C7—C80.8 (3)C10—C21—C26—C25179.57 (15)
C6—C7—C8—N1178.7 (2)C22—C21—C26—C251.0 (2)
C6—C7—C8—C91.5 (3)C21—C22—C23—C241.2 (3)
N1—C8—C9—C31.04 (19)C22—C23—C24—C250.2 (3)
N1—C8—C9—C4178.96 (15)C23—C24—C25—C260.5 (3)
C7—C8—C9—C3178.80 (18)C24—C25—C26—C210.1 (3)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y, z1; (iv) x, y+1, z; (v) x, y1, z; (vi) x, y, z+1; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y1/2, z1/2; (ix) x, y+1, z+1/2; (x) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.88 (3)2.18 (2)3.0069 (19)159 (3)
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H17N3
Mr323.39
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)24.1594 (3), 13.8501 (2), 5.2173 (1)
V3)1745.76 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.46 × 0.21 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.796, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8042, 2059, 1954
Rint0.015
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.06
No. of reflections2059
No. of parameters230
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.88 (3)2.18 (2)3.0069 (19)159 (3)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFleming, I. & Harley-Mason, J. (1961). J. Chem. Soc. pp. 5560–5561.  Google Scholar
First citationGlaser, R., Chen, G. S., Anthamatten, M. & Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449–1458.  CSD CrossRef Google Scholar
First citationLin, C.-J., Hwang, W.-S. & Chiang, M. J. (2001). J. Organomet. Chem. 640, 85–92.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRizal, M. R., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds