organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Bis(prop-2-yn-1-yl­­oxy)naphthalene

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: hehexueweijian@163.com

(Received 9 May 2010; accepted 2 June 2010; online 9 June 2010)

The title compound, C16H12O2, was synthesized from naphthalene-2,7-diol and prop-2-ynyl 4-methyl­benzene­sulfonate in the presence of sodium hydride. The crystal packing exhibits inter­molecular non-classical C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the preparation of the title compound, see: Srinivasan et al. (2006[Srinivasan, R., Uttamchandani, M. & Yao, S. Q. (2006). Org. Lett. 8, 713-716.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O2

  • Mr = 236.26

  • Orthorhombic, P b c a

  • a = 11.3742 (12) Å

  • b = 8.1364 (9) Å

  • c = 26.880 (3) Å

  • V = 2487.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.04 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • 8492 measured reflections

  • 2812 independent reflections

  • 1807 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.146

  • S = 1.02

  • 2812 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4–C9 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.93 2.54 3.465 (3) 172
C14—H14B⋯O1ii 0.97 2.57 3.533 (3) 173
C11—H11ACg2ii 0.97 2.67 3.526 (3) 148
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Naphthalene derivatives have manifested applications in many fields, for example, as a colorant, explosive, disinfectant, insecticide and plant hormone auxin. The reaction which between hydroxybenzene and prop-2-yn-1-yl 4-methylbenzenesulfonate gives rise to the product with rapid reaction rates by the introduction of sodium hydride (Srinivasan et al., 2006;).

Here we report the crystal structure of the title compound (Fig. 1). The crystal packing exhibits non-classical C—H···O hydrogen bonds and C—H···π interaction (Table 1).

Related literature top

For the preparation of the title compound, see: Srinivasan et al. (2006).

Experimental top

The title compound was synthesized according to the literature procedure of Srinivasan et al. (2006). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform : methanol (10:1) at room temperature.

Refinement top

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C—H = 0.97 Å) and Uiso(H) = 1.2 Ueq(C) for methylene, (C—H = 0.93 Å) and Uiso(H) =1.2Ueq(C) for aromatic H atoms, and (C—H = 0.93 Å) and Uiso(H) = 1.2Ueq(C) for alkynyl aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.
2,7-Bis(prop-2-yn-1-yloxy)naphthalene top
Crystal data top
C16H12O2F(000) = 992
Mr = 236.26Dx = 1.262 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1273 reflections
a = 11.3742 (12) Åθ = 3.0–22.2°
b = 8.1364 (9) ŵ = 0.08 mm1
c = 26.880 (3) ÅT = 298 K
V = 2487.6 (5) Å3Plate, colorless
Z = 80.16 × 0.12 × 0.04 mm
Data collection top
Bruker SMART 1000
diffractometer
1807 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
Graphite monochromatorθmax = 27.5°, θmin = 2.4°
ϕ and ω scansh = 1412
8492 measured reflectionsk = 910
2812 independent reflectionsl = 1134
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
2812 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H12O2V = 2487.6 (5) Å3
Mr = 236.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.3742 (12) ŵ = 0.08 mm1
b = 8.1364 (9) ÅT = 298 K
c = 26.880 (3) Å0.16 × 0.12 × 0.04 mm
Data collection top
Bruker SMART 1000
diffractometer
1807 reflections with I > 2σ(I)
8492 measured reflectionsRint = 0.070
2812 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
2812 reflectionsΔρmin = 0.23 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88182 (18)0.2124 (2)0.28194 (7)0.0385 (5)
C20.78099 (18)0.1252 (3)0.26709 (8)0.0441 (5)
H20.72960.08390.29090.053*
C30.75854 (19)0.1013 (3)0.21809 (8)0.0462 (6)
H30.69150.04370.20870.055*
C40.83522 (18)0.1623 (2)0.18105 (7)0.0373 (5)
C50.8135 (2)0.1425 (3)0.12958 (8)0.0479 (6)
H50.74580.08810.11920.057*
C60.8896 (2)0.2014 (3)0.09503 (8)0.0486 (6)
H60.87330.18790.06140.058*
C70.99257 (19)0.2824 (2)0.10979 (7)0.0410 (5)
C81.01698 (18)0.3049 (2)0.15926 (7)0.0386 (5)
H81.08570.35840.16880.046*
C90.93755 (18)0.2466 (2)0.19607 (7)0.0349 (5)
C100.95915 (17)0.2723 (2)0.24742 (7)0.0356 (5)
H101.02560.32960.25760.043*
C110.9945 (2)0.3094 (3)0.35131 (8)0.0511 (6)
H11A0.98760.42700.34600.061*
H11B1.06420.27070.33420.061*
C121.0032 (2)0.2742 (3)0.40422 (8)0.0538 (6)
C131.0111 (2)0.2413 (3)0.44607 (10)0.0777 (9)
H131.01730.21490.47960.093*
C141.1715 (2)0.4069 (3)0.08303 (7)0.0486 (6)
H14A1.22480.32550.09670.058*
H14B1.16020.49260.10770.058*
C151.2208 (2)0.4766 (3)0.03774 (8)0.0512 (6)
C161.2596 (2)0.5391 (3)0.00261 (10)0.0727 (8)
H161.29070.58920.02560.087*
O10.89297 (13)0.22760 (17)0.33268 (5)0.0490 (4)
O21.06171 (14)0.33243 (19)0.07121 (5)0.0513 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0421 (13)0.0378 (11)0.0356 (11)0.0007 (10)0.0013 (9)0.0027 (9)
C20.0396 (13)0.0481 (13)0.0448 (13)0.0091 (10)0.0048 (10)0.0058 (10)
C30.0381 (13)0.0467 (13)0.0540 (14)0.0078 (10)0.0041 (10)0.0019 (11)
C40.0371 (13)0.0350 (11)0.0398 (11)0.0014 (9)0.0048 (9)0.0021 (9)
C50.0450 (14)0.0507 (13)0.0479 (13)0.0044 (11)0.0123 (11)0.0066 (11)
C60.0592 (16)0.0554 (14)0.0312 (11)0.0003 (12)0.0104 (10)0.0058 (10)
C70.0487 (14)0.0408 (12)0.0335 (11)0.0012 (10)0.0006 (10)0.0022 (9)
C80.0406 (13)0.0422 (12)0.0329 (11)0.0031 (10)0.0035 (9)0.0013 (9)
C90.0390 (12)0.0324 (10)0.0331 (10)0.0024 (9)0.0026 (9)0.0015 (8)
C100.0357 (12)0.0377 (11)0.0333 (10)0.0018 (9)0.0032 (8)0.0012 (8)
C110.0502 (15)0.0653 (15)0.0377 (12)0.0113 (12)0.0010 (10)0.0041 (10)
C120.0550 (16)0.0705 (16)0.0358 (12)0.0158 (13)0.0011 (11)0.0001 (11)
C130.078 (2)0.119 (2)0.0368 (14)0.0317 (17)0.0031 (13)0.0089 (14)
C140.0537 (15)0.0559 (14)0.0361 (11)0.0011 (12)0.0023 (10)0.0015 (10)
C150.0618 (16)0.0499 (14)0.0420 (13)0.0013 (12)0.0130 (11)0.0047 (11)
C160.092 (2)0.0675 (17)0.0582 (17)0.0010 (15)0.0295 (15)0.0021 (14)
O10.0529 (10)0.0647 (10)0.0295 (8)0.0162 (8)0.0016 (7)0.0032 (7)
O20.0597 (10)0.0663 (10)0.0278 (8)0.0085 (9)0.0018 (7)0.0025 (7)
Geometric parameters (Å, º) top
C1—C101.368 (3)C8—H80.9300
C1—O11.375 (2)C9—C101.417 (3)
C1—C21.406 (3)C10—H100.9300
C2—C31.356 (3)C11—O11.424 (2)
C2—H20.9300C11—C121.454 (3)
C3—C41.414 (3)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C91.410 (3)C12—C131.160 (3)
C4—C51.415 (3)C13—H130.9300
C5—C61.357 (3)C14—O21.424 (3)
C5—H50.9300C14—C151.455 (3)
C6—C71.401 (3)C14—H14A0.9700
C6—H60.9300C14—H14B0.9700
C7—O21.364 (2)C15—C161.160 (3)
C7—C81.371 (3)C16—H160.9300
C8—C91.421 (3)
C10—C1—O1125.53 (18)C4—C9—C10119.59 (18)
C10—C1—C2120.75 (19)C4—C9—C8119.19 (17)
O1—C1—C2113.71 (17)C10—C9—C8121.22 (19)
C3—C2—C1120.12 (19)C1—C10—C9119.76 (19)
C3—C2—H2119.9C1—C10—H10120.1
C1—C2—H2119.9C9—C10—H10120.1
C2—C3—C4121.2 (2)O1—C11—C12107.91 (17)
C2—C3—H3119.4O1—C11—H11A110.1
C4—C3—H3119.4C12—C11—H11A110.1
C9—C4—C3118.59 (18)O1—C11—H11B110.1
C9—C4—C5118.69 (18)C12—C11—H11B110.1
C3—C4—C5122.72 (19)H11A—C11—H11B108.4
C6—C5—C4121.1 (2)C13—C12—C11177.9 (3)
C6—C5—H5119.4C12—C13—H13180.0
C4—C5—H5119.4O2—C14—C15108.50 (17)
C5—C6—C7120.38 (19)O2—C14—H14A110.0
C5—C6—H6119.8C15—C14—H14A110.0
C7—C6—H6119.8O2—C14—H14B110.0
O2—C7—C8125.5 (2)C15—C14—H14B110.0
O2—C7—C6114.03 (18)H14A—C14—H14B108.4
C8—C7—C6120.45 (19)C16—C15—C14176.9 (3)
C7—C8—C9120.13 (19)C15—C16—H16180.0
C7—C8—H8119.9C1—O1—C11117.76 (15)
C9—C8—H8119.9C7—O2—C14117.59 (15)
C10—C1—C2—C30.8 (3)C3—C4—C9—C8178.38 (18)
O1—C1—C2—C3179.76 (19)C5—C4—C9—C81.7 (3)
C1—C2—C3—C40.2 (3)C7—C8—C9—C41.5 (3)
C2—C3—C4—C91.2 (3)C7—C8—C9—C10178.24 (18)
C2—C3—C4—C5178.8 (2)O1—C1—C10—C9179.43 (17)
C9—C4—C5—C60.7 (3)C2—C1—C10—C90.1 (3)
C3—C4—C5—C6179.4 (2)C4—C9—C10—C11.3 (3)
C4—C5—C6—C70.6 (3)C8—C9—C10—C1179.01 (18)
C5—C6—C7—O2178.94 (19)C10—C1—O1—C111.4 (3)
C5—C6—C7—C80.8 (3)C2—C1—O1—C11178.01 (17)
O2—C7—C8—C9179.92 (18)C12—C11—O1—C1165.49 (18)
C6—C7—C8—C90.2 (3)C8—C7—O2—C143.4 (3)
C3—C4—C9—C101.9 (3)C6—C7—O2—C14176.27 (18)
C5—C4—C9—C10178.05 (18)C15—C14—O2—C7170.02 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.543.465 (3)172
C14—H14B···O1ii0.972.573.533 (3)173
C11—H11A···Cg2ii0.972.673.526 (3)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12O2
Mr236.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)11.3742 (12), 8.1364 (9), 26.880 (3)
V3)2487.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.16 × 0.12 × 0.04
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8492, 2812, 1807
Rint0.070
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.146, 1.02
No. of reflections2812
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.543.465 (3)172
C14—H14B···O1ii0.972.573.533 (3)173
C11—H11A···Cg2ii0.972.673.526 (3)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to Xianggao Meng for the data collection.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, R., Uttamchandani, M. & Yao, S. Q. (2006). Org. Lett. 8, 713–716.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds