organic compounds
9-Benzyl-10-methylacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 21H18N+·CF3OS3−, the cations form inversion dimers through π–π interactions between the acridine ring systems. These dimers are further linked by C—H⋯π interactions. The cations and anions are connected by C—H⋯O, C—F⋯π and S—O⋯π interactions. The acridine and benzene ring systems are oriented at a dihedral angle of 76.8 (1)°with respect to each other. The acridine moieties are either parallel or inclined at an angle of 62.4 (1)° in the crystal structure.
of the title compound, CRelated literature
For general background to acridinium derivatives, see: King et al. (2007); Roda et al. (2003); Wróblewska et al. (2004); Trzybiński et al. (2010); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2007); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Huntress & Shaw (1948); Sikorski et al. (2007); Trzybiński et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681001963X/om2343sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681001963X/om2343Isup2.hkl
9-Benzylacridine was prepared by treating N-phenylaniline with an equimolar amount of phenylacetic acid, both dispersed in molten zinc chloride (Huntress & Shaw, 1948; Sikorski et al., 2007). The crude product was purified chromatographically (SiO2, cyclohexane-ethyl acetate, 5:2 v/v). The compound thus obtained was quaternarized with a five-fold molar excess of methyltrifluoromethanesulfonate dissolved in anhydrous dichloromethane (Trzybiński et al., 2010). The crude 9-benzyl-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered, and precipitated with a 25 v/v excess of diethyl ether. Light-orange crystals suitable for X-Ray investigations were grown from absolute ethanol solution (m.p. 478–480 K).
H atoms were positioned geometrically, with C—H = 0.93 Å, 0.96 Å and 0.97 Å for the aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the aliphatic H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O hydrogen bond is represented by a dashed line. | |
Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π, S–O···π and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x + 1/2, –y + 1/2, z + 1/2; (ii) –x + 2, –y, –z + 1; (iii) –x + 2, –y + 1, –z + 1; (iv) –x + 3/2, y – 1/2, –z + 1/2; (v) –x + 3/2, y + 1/2, –z + 1/2.] |
C21H18N+·CF3O3S− | F(000) = 896 |
Mr = 433.44 | Dx = 1.449 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5587 reflections |
a = 14.6211 (7) Å | θ = 3.2–29.2° |
b = 8.2514 (2) Å | µ = 0.22 mm−1 |
c = 17.2900 (8) Å | T = 295 K |
β = 107.707 (5)° | Plate, light-orange |
V = 1987.12 (15) Å3 | 0.41 × 0.25 × 0.08 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3528 independent reflections |
Radiation source: Enhanced (Mo) X-ray Source | 2191 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.3° |
ω scans | h = −17→12 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −9→9 |
Tmin = 0.953, Tmax = 0.988 | l = −20→20 |
16520 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0814P)2 + 0.218P] where P = (Fo2 + 2Fc2)/3 |
3528 reflections | (Δ/σ)max = 0.001 |
272 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C21H18N+·CF3O3S− | V = 1987.12 (15) Å3 |
Mr = 433.44 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 14.6211 (7) Å | µ = 0.22 mm−1 |
b = 8.2514 (2) Å | T = 295 K |
c = 17.2900 (8) Å | 0.41 × 0.25 × 0.08 mm |
β = 107.707 (5)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3528 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2191 reflections with I > 2σ(I) |
Tmin = 0.953, Tmax = 0.988 | Rint = 0.048 |
16520 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.37 e Å−3 |
3528 reflections | Δρmin = −0.28 e Å−3 |
272 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.0142 (2) | 0.2164 (4) | 0.5705 (2) | 0.0680 (10) | |
H1 | 1.0341 | 0.1838 | 0.6245 | 0.082* | |
C2 | 1.0692 (3) | 0.1812 (4) | 0.5215 (3) | 0.0870 (13) | |
H2 | 1.1267 | 0.1251 | 0.5419 | 0.104* | |
C3 | 1.0384 (4) | 0.2302 (5) | 0.4410 (3) | 0.0919 (14) | |
H3 | 1.0760 | 0.2037 | 0.4081 | 0.110* | |
C4 | 0.9568 (3) | 0.3141 (4) | 0.4080 (3) | 0.0793 (11) | |
H4 | 0.9395 | 0.3451 | 0.3538 | 0.095* | |
C5 | 0.6717 (3) | 0.5685 (3) | 0.4389 (2) | 0.0616 (9) | |
H5 | 0.6566 | 0.6103 | 0.3866 | 0.074* | |
C6 | 0.6130 (3) | 0.5955 (4) | 0.4840 (3) | 0.0703 (10) | |
H6 | 0.5572 | 0.6554 | 0.4620 | 0.084* | |
C7 | 0.6331 (2) | 0.5369 (4) | 0.5617 (2) | 0.0641 (9) | |
H7 | 0.5903 | 0.5551 | 0.5911 | 0.077* | |
C8 | 0.7146 (2) | 0.4531 (3) | 0.59546 (18) | 0.0515 (8) | |
H8 | 0.7275 | 0.4155 | 0.6484 | 0.062* | |
C9 | 0.8675 (2) | 0.3374 (3) | 0.58718 (16) | 0.0416 (7) | |
N10 | 0.8163 (2) | 0.4426 (3) | 0.42625 (14) | 0.0545 (7) | |
C11 | 0.9266 (2) | 0.3027 (3) | 0.53895 (18) | 0.0490 (8) | |
C12 | 0.8982 (2) | 0.3545 (3) | 0.45600 (19) | 0.0536 (8) | |
C13 | 0.7815 (2) | 0.4203 (3) | 0.55233 (15) | 0.0411 (7) | |
C14 | 0.7575 (2) | 0.4760 (3) | 0.47112 (18) | 0.0486 (8) | |
C15 | 0.8974 (2) | 0.2879 (3) | 0.67532 (17) | 0.0514 (8) | |
H15A | 0.8641 | 0.3559 | 0.7039 | 0.062* | |
H15B | 0.9657 | 0.3076 | 0.6987 | 0.062* | |
C16 | 0.8769 (2) | 0.1104 (3) | 0.68912 (16) | 0.0450 (7) | |
C17 | 0.7896 (2) | 0.0396 (3) | 0.64921 (19) | 0.0565 (8) | |
H17 | 0.7431 | 0.0991 | 0.6111 | 0.068* | |
C18 | 0.7708 (2) | −0.1185 (4) | 0.6653 (2) | 0.0623 (9) | |
H18 | 0.7117 | −0.1645 | 0.6383 | 0.075* | |
C19 | 0.8388 (3) | −0.2080 (4) | 0.72059 (19) | 0.0661 (10) | |
H19 | 0.8256 | −0.3141 | 0.7320 | 0.079* | |
C20 | 0.9259 (3) | −0.1408 (4) | 0.7590 (2) | 0.0739 (11) | |
H20 | 0.9730 | −0.2022 | 0.7954 | 0.089* | |
C21 | 0.9445 (3) | 0.0179 (4) | 0.74392 (18) | 0.0627 (9) | |
H21 | 1.0038 | 0.0631 | 0.7713 | 0.075* | |
C22 | 0.7881 (3) | 0.4991 (6) | 0.3401 (2) | 0.0921 (13) | |
H22A | 0.7789 | 0.6144 | 0.3383 | 0.138* | |
H22B | 0.7294 | 0.4470 | 0.3098 | 0.138* | |
H22C | 0.8379 | 0.4721 | 0.3167 | 0.138* | |
S23 | 0.84575 (6) | 0.55745 (8) | 0.14455 (5) | 0.0509 (3) | |
O24 | 0.8608 (2) | 0.4008 (3) | 0.17948 (15) | 0.0869 (8) | |
O25 | 0.87049 (18) | 0.6881 (3) | 0.20097 (14) | 0.0771 (7) | |
O26 | 0.75711 (18) | 0.5802 (3) | 0.08205 (16) | 0.0925 (8) | |
C27 | 0.9326 (2) | 0.5715 (3) | 0.09040 (19) | 0.0553 (8) | |
F28 | 1.01928 (18) | 0.5412 (4) | 0.13525 (16) | 0.1322 (11) | |
F29 | 0.9156 (2) | 0.4660 (3) | 0.03015 (15) | 0.1090 (9) | |
F30 | 0.9335 (2) | 0.7119 (3) | 0.05685 (18) | 0.1184 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.051 (2) | 0.0523 (17) | 0.102 (3) | −0.0032 (16) | 0.025 (2) | −0.0051 (18) |
C2 | 0.062 (3) | 0.061 (2) | 0.147 (4) | −0.0002 (18) | 0.045 (3) | −0.014 (3) |
C3 | 0.098 (4) | 0.074 (3) | 0.133 (4) | −0.020 (2) | 0.078 (3) | −0.035 (3) |
C4 | 0.094 (3) | 0.070 (2) | 0.092 (3) | −0.021 (2) | 0.055 (3) | −0.021 (2) |
C5 | 0.063 (2) | 0.0494 (17) | 0.058 (2) | −0.0072 (16) | −0.0032 (18) | 0.0132 (15) |
C6 | 0.058 (2) | 0.0511 (18) | 0.092 (3) | 0.0070 (16) | 0.007 (2) | −0.0005 (19) |
C7 | 0.055 (2) | 0.0556 (18) | 0.082 (3) | 0.0044 (16) | 0.0208 (19) | −0.0152 (18) |
C8 | 0.057 (2) | 0.0479 (16) | 0.0494 (17) | −0.0042 (15) | 0.0155 (16) | −0.0066 (13) |
C9 | 0.0406 (17) | 0.0361 (14) | 0.0437 (16) | −0.0092 (12) | 0.0063 (14) | −0.0046 (12) |
N10 | 0.0601 (18) | 0.0573 (14) | 0.0459 (14) | −0.0176 (13) | 0.0158 (13) | 0.0010 (12) |
C11 | 0.0440 (18) | 0.0397 (14) | 0.065 (2) | −0.0079 (13) | 0.0191 (16) | −0.0050 (14) |
C12 | 0.061 (2) | 0.0460 (16) | 0.064 (2) | −0.0236 (15) | 0.0350 (18) | −0.0155 (15) |
C13 | 0.0463 (17) | 0.0345 (13) | 0.0397 (15) | −0.0065 (12) | 0.0091 (13) | −0.0031 (12) |
C14 | 0.054 (2) | 0.0409 (15) | 0.0485 (18) | −0.0132 (13) | 0.0121 (16) | 0.0005 (13) |
C15 | 0.0536 (19) | 0.0475 (16) | 0.0480 (17) | −0.0013 (13) | 0.0078 (15) | 0.0024 (13) |
C16 | 0.0483 (18) | 0.0450 (15) | 0.0387 (15) | −0.0019 (13) | 0.0088 (14) | −0.0037 (12) |
C17 | 0.0489 (19) | 0.0520 (17) | 0.0626 (19) | −0.0003 (14) | 0.0081 (16) | −0.0030 (15) |
C18 | 0.061 (2) | 0.0570 (19) | 0.069 (2) | −0.0097 (16) | 0.0209 (18) | −0.0068 (17) |
C19 | 0.101 (3) | 0.0482 (17) | 0.055 (2) | −0.0102 (19) | 0.032 (2) | −0.0009 (16) |
C20 | 0.095 (3) | 0.058 (2) | 0.053 (2) | 0.004 (2) | −0.0001 (19) | 0.0128 (16) |
C21 | 0.068 (2) | 0.0598 (19) | 0.0486 (18) | −0.0066 (16) | 0.0000 (17) | 0.0059 (15) |
C22 | 0.095 (3) | 0.134 (3) | 0.046 (2) | −0.025 (3) | 0.020 (2) | 0.017 (2) |
S23 | 0.0509 (5) | 0.0466 (4) | 0.0560 (5) | −0.0018 (3) | 0.0174 (4) | −0.0017 (3) |
O24 | 0.131 (2) | 0.0614 (14) | 0.0900 (17) | 0.0137 (14) | 0.0658 (17) | 0.0192 (13) |
O25 | 0.0813 (18) | 0.0706 (14) | 0.0855 (16) | −0.0086 (12) | 0.0343 (14) | −0.0294 (13) |
O26 | 0.0492 (15) | 0.114 (2) | 0.1010 (19) | −0.0060 (14) | 0.0025 (14) | −0.0007 (16) |
C27 | 0.058 (2) | 0.0492 (17) | 0.060 (2) | 0.0005 (15) | 0.0213 (17) | 0.0023 (15) |
F28 | 0.0559 (15) | 0.234 (3) | 0.1091 (19) | 0.0300 (17) | 0.0292 (14) | 0.015 (2) |
F29 | 0.159 (3) | 0.0953 (15) | 0.1012 (17) | −0.0266 (15) | 0.0826 (17) | −0.0321 (13) |
F30 | 0.156 (2) | 0.0668 (13) | 0.172 (2) | 0.0008 (14) | 0.108 (2) | 0.0329 (14) |
C1—C2 | 1.364 (5) | C13—C14 | 1.416 (4) |
C1—C11 | 1.421 (4) | C15—C16 | 1.528 (4) |
C1—H1 | 0.9300 | C15—H15A | 0.9700 |
C2—C3 | 1.387 (6) | C15—H15B | 0.9700 |
C2—H2 | 0.9300 | C16—C21 | 1.374 (4) |
C3—C4 | 1.346 (6) | C16—C17 | 1.382 (4) |
C3—H3 | 0.9300 | C17—C18 | 1.378 (4) |
C4—C12 | 1.403 (5) | C17—H17 | 0.9300 |
C4—H4 | 0.9300 | C18—C19 | 1.367 (4) |
C5—C6 | 1.342 (5) | C18—H18 | 0.9300 |
C5—C14 | 1.428 (4) | C19—C20 | 1.363 (5) |
C5—H5 | 0.9300 | C19—H19 | 0.9300 |
C6—C7 | 1.372 (5) | C20—C21 | 1.378 (4) |
C6—H6 | 0.9300 | C20—H20 | 0.9300 |
C7—C8 | 1.348 (4) | C21—H21 | 0.9300 |
C7—H7 | 0.9300 | C22—H22A | 0.9600 |
C8—C13 | 1.425 (4) | C22—H22B | 0.9600 |
C8—H8 | 0.9300 | C22—H22C | 0.9600 |
C9—C13 | 1.396 (4) | S23—O24 | 1.415 (2) |
C9—C11 | 1.402 (4) | S23—O25 | 1.425 (2) |
C9—C15 | 1.508 (4) | S23—O26 | 1.425 (2) |
N10—C14 | 1.350 (4) | S23—C27 | 1.796 (3) |
N10—C12 | 1.361 (4) | C27—F28 | 1.293 (4) |
N10—C22 | 1.495 (4) | C27—F30 | 1.297 (3) |
C11—C12 | 1.432 (4) | C27—F29 | 1.322 (3) |
C2—C1—C11 | 120.1 (4) | C9—C15—C16 | 114.0 (2) |
C2—C1—H1 | 120.0 | C9—C15—H15A | 108.8 |
C11—C1—H1 | 120.0 | C16—C15—H15A | 108.8 |
C1—C2—C3 | 119.2 (4) | C9—C15—H15B | 108.8 |
C1—C2—H2 | 120.4 | C16—C15—H15B | 108.8 |
C3—C2—H2 | 120.4 | H15A—C15—H15B | 107.7 |
C4—C3—C2 | 123.4 (4) | C21—C16—C17 | 118.1 (3) |
C4—C3—H3 | 118.3 | C21—C16—C15 | 120.4 (3) |
C2—C3—H3 | 118.3 | C17—C16—C15 | 121.5 (2) |
C3—C4—C12 | 119.6 (4) | C18—C17—C16 | 120.6 (3) |
C3—C4—H4 | 120.2 | C18—C17—H17 | 119.7 |
C12—C4—H4 | 120.2 | C16—C17—H17 | 119.7 |
C6—C5—C14 | 120.2 (3) | C19—C18—C17 | 120.4 (3) |
C6—C5—H5 | 119.9 | C19—C18—H18 | 119.8 |
C14—C5—H5 | 119.9 | C17—C18—H18 | 119.8 |
C5—C6—C7 | 121.7 (3) | C20—C19—C18 | 119.6 (3) |
C5—C6—H6 | 119.2 | C20—C19—H19 | 120.2 |
C7—C6—H6 | 119.2 | C18—C19—H19 | 120.2 |
C8—C7—C6 | 120.2 (4) | C19—C20—C21 | 120.3 (3) |
C8—C7—H7 | 119.9 | C19—C20—H20 | 119.9 |
C6—C7—H7 | 119.9 | C21—C20—H20 | 119.9 |
C7—C8—C13 | 121.9 (3) | C16—C21—C20 | 121.1 (3) |
C7—C8—H8 | 119.1 | C16—C21—H21 | 119.5 |
C13—C8—H8 | 119.1 | C20—C21—H21 | 119.5 |
C13—C9—C11 | 118.7 (3) | N10—C22—H22A | 109.5 |
C13—C9—C15 | 121.0 (3) | N10—C22—H22B | 109.5 |
C11—C9—C15 | 120.2 (3) | H22A—C22—H22B | 109.5 |
C14—N10—C12 | 122.2 (3) | N10—C22—H22C | 109.5 |
C14—N10—C22 | 118.6 (3) | H22A—C22—H22C | 109.5 |
C12—N10—C22 | 119.2 (3) | H22B—C22—H22C | 109.5 |
C9—C11—C1 | 121.4 (3) | O24—S23—O25 | 115.13 (15) |
C9—C11—C12 | 119.4 (3) | O24—S23—O26 | 115.57 (17) |
C1—C11—C12 | 119.2 (3) | O25—S23—O26 | 113.74 (15) |
N10—C12—C4 | 122.0 (3) | O24—S23—C27 | 103.79 (14) |
N10—C12—C11 | 119.5 (3) | O25—S23—C27 | 103.62 (15) |
C4—C12—C11 | 118.5 (3) | O26—S23—C27 | 102.73 (16) |
C9—C13—C14 | 120.4 (3) | F28—C27—F30 | 107.4 (3) |
C9—C13—C8 | 122.6 (2) | F28—C27—F29 | 105.1 (3) |
C14—C13—C8 | 117.0 (3) | F30—C27—F29 | 105.1 (3) |
N10—C14—C13 | 119.6 (3) | F28—C27—S23 | 113.2 (2) |
N10—C14—C5 | 121.5 (3) | F30—C27—S23 | 113.3 (2) |
C13—C14—C5 | 118.9 (3) | F29—C27—S23 | 112.0 (2) |
C11—C1—C2—C3 | −0.2 (5) | C12—N10—C14—C5 | −179.9 (2) |
C1—C2—C3—C4 | 1.2 (6) | C22—N10—C14—C5 | −2.4 (4) |
C2—C3—C4—C12 | −0.6 (6) | C9—C13—C14—N10 | 2.8 (4) |
C14—C5—C6—C7 | 0.4 (5) | C8—C13—C14—N10 | −177.3 (2) |
C5—C6—C7—C8 | 1.6 (5) | C9—C13—C14—C5 | −176.4 (2) |
C6—C7—C8—C13 | −0.9 (4) | C8—C13—C14—C5 | 3.5 (4) |
C13—C9—C11—C1 | −179.0 (2) | C6—C5—C14—N10 | 177.8 (3) |
C15—C9—C11—C1 | 2.0 (4) | C6—C5—C14—C13 | −3.0 (4) |
C13—C9—C11—C12 | 0.7 (4) | C13—C9—C15—C16 | 99.8 (3) |
C15—C9—C11—C12 | −178.3 (2) | C11—C9—C15—C16 | −81.1 (3) |
C2—C1—C11—C9 | 178.5 (3) | C9—C15—C16—C21 | 136.1 (3) |
C2—C1—C11—C12 | −1.2 (4) | C9—C15—C16—C17 | −45.8 (4) |
C14—N10—C12—C4 | 177.2 (3) | C21—C16—C17—C18 | 1.1 (5) |
C22—N10—C12—C4 | −0.4 (4) | C15—C16—C17—C18 | −177.0 (3) |
C14—N10—C12—C11 | −3.7 (4) | C16—C17—C18—C19 | −0.5 (5) |
C22—N10—C12—C11 | 178.8 (3) | C17—C18—C19—C20 | −1.0 (5) |
C3—C4—C12—N10 | 178.3 (3) | C18—C19—C20—C21 | 1.9 (5) |
C3—C4—C12—C11 | −0.9 (5) | C17—C16—C21—C20 | −0.2 (5) |
C9—C11—C12—N10 | 2.8 (4) | C15—C16—C21—C20 | 177.9 (3) |
C1—C11—C12—N10 | −177.5 (2) | C19—C20—C21—C16 | −1.3 (5) |
C9—C11—C12—C4 | −178.0 (3) | O24—S23—C27—F28 | −54.1 (3) |
C1—C11—C12—C4 | 1.7 (4) | O25—S23—C27—F28 | 66.5 (3) |
C11—C9—C13—C14 | −3.5 (4) | O26—S23—C27—F28 | −174.8 (3) |
C15—C9—C13—C14 | 175.5 (2) | O24—S23—C27—F30 | −176.8 (3) |
C11—C9—C13—C8 | 176.6 (2) | O25—S23—C27—F30 | −56.1 (3) |
C15—C9—C13—C8 | −4.4 (4) | O26—S23—C27—F30 | 62.5 (3) |
C7—C8—C13—C9 | 178.3 (2) | O24—S23—C27—F29 | 64.6 (3) |
C7—C8—C13—C14 | −1.7 (4) | O25—S23—C27—F29 | −174.8 (2) |
C12—N10—C14—C13 | 0.9 (4) | O26—S23—C27—F29 | −56.2 (2) |
C22—N10—C14—C13 | 178.5 (3) |
Cg4 is the centroid of the C16–C21 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O26i | 0.93 | 2.49 | 3.398 (5) | 167 |
C3—H3···Cg4ii | 0.93 | 2.74 | 3.630 (5) | 161 |
C15—H15B···O25iii | 0.97 | 2.49 | 3.423 (4) | 160 |
C22—H22B···O25iv | 0.96 | 2.56 | 3.386 (5) | 144 |
C22—H22C···O24 | 0.96 | 2.56 | 3.361 (5) | 141 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+2, −y, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+3/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C21H18N+·CF3O3S− |
Mr | 433.44 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 14.6211 (7), 8.2514 (2), 17.2900 (8) |
β (°) | 107.707 (5) |
V (Å3) | 1987.12 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.41 × 0.25 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.953, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16520, 3528, 2191 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.153, 1.06 |
No. of reflections | 3528 |
No. of parameters | 272 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.28 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg4 is the centroid of the C16–C21 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O26i | 0.93 | 2.49 | 3.398 (5) | 167 |
C3—H3···Cg4ii | 0.93 | 2.74 | 3.630 (5) | 161 |
C15—H15B···O25iii | 0.97 | 2.49 | 3.423 (4) | 160 |
C22—H22B···O25iv | 0.96 | 2.56 | 3.386 (5) | 144 |
C22—H22C···O24 | 0.96 | 2.56 | 3.361 (5) | 141 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+2, −y, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+3/2, y−1/2, −z+1/2. |
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively. |
X | I | J | I···J | X···J | X–I···J |
C27 | F30 | Cg3v | 3.115 (3) | 4.233 (3) | 143.0 (2) |
S23 | O26 | Cg1v | 3.085 (3) | 4.167 (2) | 131.4 (2) |
Symmetry code: (v) –x + 3/2, y + 1/2, –z + 1/2. |
Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 2iii | 3.806 (2) | 2.11 (15) | 3.575 (2) | 1.306 (2) |
2 | 1iii | 3.806 (2) | 2.11 (15) | 3.530 (2) | 1.423 (2) |
2 | 2iii | 3.886 (2) | 0.02 (15) | 3.563 (2) | 1.551 (2) |
Symmetry code: (iii) –x + 2, –y + 1, –z + 1. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant DS No. 8220-4-0087-9).
References
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
Huntress, E. H. & Shaw, E. N. (1948). J. Org. Chem. 13, 674–675. CrossRef PubMed CAS Web of Science Google Scholar
King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176. Web of Science CrossRef PubMed CAS Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Kowalska, K., Krzymiński, K. & Błażejowski, J. (2007). Acta Cryst. E63, o2670–o2672. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Trzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826–o827. Web of Science CrossRef IUCr Journals Google Scholar
Wróblewska, A., Huta, O. M., Midyanyj, S. V., Patsay, I. O., Rak, J. & Błażejowski, J. (2004). J. Org. Chem. 69, 1607–1614. Web of Science CrossRef PubMed CAS Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quaternary N-methylacridinium cations substituted in position 9 undergo oxidation with H2O2 or other oxidants in alkaline media accompanied by chemiluminescence (Zomer & Jacquemijns, 2001). The emission that originates from electronically excited 10-methyl-9-acridinone, the oxidation product, is affected by the features of the substituent in position 9. For these reasons various acridine derivatives of the above type have been synthesized and investigated from the point of view of their chemiluminogenic ability and applicability in immunological, biological, chemical and environmental analyses (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007). Continuing the search for 9-substituted acridinium derivatives with chemiluminogenic potential (Wróblewska et al., 2004; Trzybiński et al., 2010), we synthesized 9-benzyl-10-methylacridinium trifluoromethanesulfonate whose crystal structure is presented here.
In the crystal structure, the inversely oriented cations form dimers through multidirectional π–π interactions involving acridine moieties (Table 3, Fig. 2). These dimers are linked by C–H···O (Table 1, Figs. 1 and 2), C–F···π (acridine) (Table 2, Fig. 2) and S–O···π (acridine) (Table 2, Fig. 2) interactions with adjacent anions, and by C–H···π (phenyl) (Table 1, Fig. 2) interactions with neighboring cations. The C–H···O interactions are of the hydrogen bond type (Bianchi et al., 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005), S–O···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0427 (3) Å and 0.0066 (3) Å, the acridine and benzene ring systems are oriented at 76.8 (1)°. The acridine moieties in pairs are parallel (remain at an angle of 0.0 (1)°), while in adjacent pairs they are inclined at an angle of 62.4 (1)°. The mutual arrangement of the acridine and benzene ring systems, as well as the acridine skeletons in the crystal lattice is similar in the compound investigated and its precursor – 9-benzylacridine (Sikorski et al., 2007).