organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1548-o1549

9-Benzyl-10-methyl­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 18 May 2010; accepted 25 May 2010; online 5 June 2010)

In the crystal structure of the title compound, C21H18N+·CF3OS3, the cations form inversion dimers through ππ inter­actions between the acridine ring systems. These dimers are further linked by C—H⋯π inter­actions. The cations and anions are connected by C—H⋯O, C—F⋯π and S—O⋯π inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 76.8 (1)°with respect to each other. The acridine moieties are either parallel or inclined at an angle of 62.4 (1)° in the crystal structure.

Related literature

For general background to acridinium derivatives, see: King et al. (2007[King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169-4176.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462-470.]); Wróblewska et al. (2004[Wróblewska, A., Huta, O. M., Midyanyj, S. V., Patsay, I. O., Rak, J. & Błażejowski, J. (2004). J. Org. Chem. 69, 1607-1614.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826-o827.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Sikorski et al. (2007[Sikorski, A., Kowalska, K., Krzymiński, K. & Błażejowski, J. (2007). Acta Cryst. E63, o2670-o2672.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826-o827.]). For inter­molecular inter­actions, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Huntress & Shaw (1948[Huntress, E. H. & Shaw, E. N. (1948). J. Org. Chem. 13, 674-675.]); Sikorski et al. (2007[Sikorski, A., Kowalska, K., Krzymiński, K. & Błażejowski, J. (2007). Acta Cryst. E63, o2670-o2672.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826-o827.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N+·CF3O3S

  • Mr = 433.44

  • Monoclinic, P 21 /n

  • a = 14.6211 (7) Å

  • b = 8.2514 (2) Å

  • c = 17.2900 (8) Å

  • β = 107.707 (5)°

  • V = 1987.12 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 295 K

  • 0.41 × 0.25 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.953, Tmax = 0.988

  • 16520 measured reflections

  • 3528 independent reflections

  • 2191 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.153

  • S = 1.06

  • 3528 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C16–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O26i 0.93 2.49 3.398 (5) 167
C3—H3⋯Cg4ii 0.93 2.74 3.630 (5) 161
C15—H15B⋯O25iii 0.97 2.49 3.423 (4) 160
C22—H22B⋯O25iv 0.96 2.56 3.386 (5) 144
C22—H22C⋯O24 0.96 2.56 3.361 (5) 141
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+1; (iii) -x+2, -y+1, -z+1; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
C–F⋯π and S–O⋯π inter­actions (Å,°)

Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.

X I J IJ XJ XIJ
C27 F30 Cg3v 3.115 (3) 4.233 (3) 143.0 (2)
S23 O26 Cg1v 3.085 (3) 4.167 (2) 131.4 (2)
Symmetry code: (v) –x + [{3\over 2}], y + [{1\over 2}], –z + [{1\over 2}].

Table 3
ππ inter­actions (Å, °)

Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgI_Perp CgI_Offset
1 2iii 3.806 (2) 2.11 (15) 3.575 (2) 1.306 (2)
2 1iii 3.806 (2) 2.11 (15) 3.530 (2) 1.423 (2)
2 2iii 3.886 (2) 0.02 (15) 3.563 (2) 1.551 (2)
Symmetry code: (iii) –x + 2, –y + 1, –z + 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quaternary N-methylacridinium cations substituted in position 9 undergo oxidation with H2O2 or other oxidants in alkaline media accompanied by chemiluminescence (Zomer & Jacquemijns, 2001). The emission that originates from electronically excited 10-methyl-9-acridinone, the oxidation product, is affected by the features of the substituent in position 9. For these reasons various acridine derivatives of the above type have been synthesized and investigated from the point of view of their chemiluminogenic ability and applicability in immunological, biological, chemical and environmental analyses (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007). Continuing the search for 9-substituted acridinium derivatives with chemiluminogenic potential (Wróblewska et al., 2004; Trzybiński et al., 2010), we synthesized 9-benzyl-10-methylacridinium trifluoromethanesulfonate whose crystal structure is presented here.

In the crystal structure, the inversely oriented cations form dimers through multidirectional ππ interactions involving acridine moieties (Table 3, Fig. 2). These dimers are linked by C–H···O (Table 1, Figs. 1 and 2), C–F···π (acridine) (Table 2, Fig. 2) and S–O···π (acridine) (Table 2, Fig. 2) interactions with adjacent anions, and by C–H···π (phenyl) (Table 1, Fig. 2) interactions with neighboring cations. The C–H···O interactions are of the hydrogen bond type (Bianchi et al., 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005), S–O···π (Dorn et al., 2005) and the ππ (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0427 (3) Å and 0.0066 (3) Å, the acridine and benzene ring systems are oriented at 76.8 (1)°. The acridine moieties in pairs are parallel (remain at an angle of 0.0 (1)°), while in adjacent pairs they are inclined at an angle of 62.4 (1)°. The mutual arrangement of the acridine and benzene ring systems, as well as the acridine skeletons in the crystal lattice is similar in the compound investigated and its precursor – 9-benzylacridine (Sikorski et al., 2007).

Related literature top

For general background to acridinium derivatives, see: King et al. (2007); Roda et al. (2003); Wróblewska et al. (2004); Trzybiński et al. (2010); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2007); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Huntress & Shaw (1948); Sikorski et al. (2007); Trzybiński et al. (2010).

Experimental top

9-Benzylacridine was prepared by treating N-phenylaniline with an equimolar amount of phenylacetic acid, both dispersed in molten zinc chloride (Huntress & Shaw, 1948; Sikorski et al., 2007). The crude product was purified chromatographically (SiO2, cyclohexane-ethyl acetate, 5:2 v/v). The compound thus obtained was quaternarized with a five-fold molar excess of methyltrifluoromethanesulfonate dissolved in anhydrous dichloromethane (Trzybiński et al., 2010). The crude 9-benzyl-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered, and precipitated with a 25 v/v excess of diethyl ether. Light-orange crystals suitable for X-Ray investigations were grown from absolute ethanol solution (m.p. 478–480 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å, 0.96 Å and 0.97 Å for the aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the aliphatic H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O hydrogen bond is represented by a dashed line.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π, S–O···π and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x + 1/2, –y + 1/2, z + 1/2; (ii) –x + 2, –y, –z + 1; (iii) –x + 2, –y + 1, –z + 1; (iv) –x + 3/2, y – 1/2, –z + 1/2; (v) –x + 3/2, y + 1/2, –z + 1/2.]
9-Benzyl-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C21H18N+·CF3O3SF(000) = 896
Mr = 433.44Dx = 1.449 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5587 reflections
a = 14.6211 (7) Åθ = 3.2–29.2°
b = 8.2514 (2) ŵ = 0.22 mm1
c = 17.2900 (8) ÅT = 295 K
β = 107.707 (5)°Plate, light-orange
V = 1987.12 (15) Å30.41 × 0.25 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3528 independent reflections
Radiation source: Enhanced (Mo) X-ray Source2191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.3°
ω scansh = 1712
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 99
Tmin = 0.953, Tmax = 0.988l = 2020
16520 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0814P)2 + 0.218P]
where P = (Fo2 + 2Fc2)/3
3528 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H18N+·CF3O3SV = 1987.12 (15) Å3
Mr = 433.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.6211 (7) ŵ = 0.22 mm1
b = 8.2514 (2) ÅT = 295 K
c = 17.2900 (8) Å0.41 × 0.25 × 0.08 mm
β = 107.707 (5)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3528 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2191 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.988Rint = 0.048
16520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
3528 reflectionsΔρmin = 0.28 e Å3
272 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0142 (2)0.2164 (4)0.5705 (2)0.0680 (10)
H11.03410.18380.62450.082*
C21.0692 (3)0.1812 (4)0.5215 (3)0.0870 (13)
H21.12670.12510.54190.104*
C31.0384 (4)0.2302 (5)0.4410 (3)0.0919 (14)
H31.07600.20370.40810.110*
C40.9568 (3)0.3141 (4)0.4080 (3)0.0793 (11)
H40.93950.34510.35380.095*
C50.6717 (3)0.5685 (3)0.4389 (2)0.0616 (9)
H50.65660.61030.38660.074*
C60.6130 (3)0.5955 (4)0.4840 (3)0.0703 (10)
H60.55720.65540.46200.084*
C70.6331 (2)0.5369 (4)0.5617 (2)0.0641 (9)
H70.59030.55510.59110.077*
C80.7146 (2)0.4531 (3)0.59546 (18)0.0515 (8)
H80.72750.41550.64840.062*
C90.8675 (2)0.3374 (3)0.58718 (16)0.0416 (7)
N100.8163 (2)0.4426 (3)0.42625 (14)0.0545 (7)
C110.9266 (2)0.3027 (3)0.53895 (18)0.0490 (8)
C120.8982 (2)0.3545 (3)0.45600 (19)0.0536 (8)
C130.7815 (2)0.4203 (3)0.55233 (15)0.0411 (7)
C140.7575 (2)0.4760 (3)0.47112 (18)0.0486 (8)
C150.8974 (2)0.2879 (3)0.67532 (17)0.0514 (8)
H15A0.86410.35590.70390.062*
H15B0.96570.30760.69870.062*
C160.8769 (2)0.1104 (3)0.68912 (16)0.0450 (7)
C170.7896 (2)0.0396 (3)0.64921 (19)0.0565 (8)
H170.74310.09910.61110.068*
C180.7708 (2)0.1185 (4)0.6653 (2)0.0623 (9)
H180.71170.16450.63830.075*
C190.8388 (3)0.2080 (4)0.72059 (19)0.0661 (10)
H190.82560.31410.73200.079*
C200.9259 (3)0.1408 (4)0.7590 (2)0.0739 (11)
H200.97300.20220.79540.089*
C210.9445 (3)0.0179 (4)0.74392 (18)0.0627 (9)
H211.00380.06310.77130.075*
C220.7881 (3)0.4991 (6)0.3401 (2)0.0921 (13)
H22A0.77890.61440.33830.138*
H22B0.72940.44700.30980.138*
H22C0.83790.47210.31670.138*
S230.84575 (6)0.55745 (8)0.14455 (5)0.0509 (3)
O240.8608 (2)0.4008 (3)0.17948 (15)0.0869 (8)
O250.87049 (18)0.6881 (3)0.20097 (14)0.0771 (7)
O260.75711 (18)0.5802 (3)0.08205 (16)0.0925 (8)
C270.9326 (2)0.5715 (3)0.09040 (19)0.0553 (8)
F281.01928 (18)0.5412 (4)0.13525 (16)0.1322 (11)
F290.9156 (2)0.4660 (3)0.03015 (15)0.1090 (9)
F300.9335 (2)0.7119 (3)0.05685 (18)0.1184 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (2)0.0523 (17)0.102 (3)0.0032 (16)0.025 (2)0.0051 (18)
C20.062 (3)0.061 (2)0.147 (4)0.0002 (18)0.045 (3)0.014 (3)
C30.098 (4)0.074 (3)0.133 (4)0.020 (2)0.078 (3)0.035 (3)
C40.094 (3)0.070 (2)0.092 (3)0.021 (2)0.055 (3)0.021 (2)
C50.063 (2)0.0494 (17)0.058 (2)0.0072 (16)0.0032 (18)0.0132 (15)
C60.058 (2)0.0511 (18)0.092 (3)0.0070 (16)0.007 (2)0.0005 (19)
C70.055 (2)0.0556 (18)0.082 (3)0.0044 (16)0.0208 (19)0.0152 (18)
C80.057 (2)0.0479 (16)0.0494 (17)0.0042 (15)0.0155 (16)0.0066 (13)
C90.0406 (17)0.0361 (14)0.0437 (16)0.0092 (12)0.0063 (14)0.0046 (12)
N100.0601 (18)0.0573 (14)0.0459 (14)0.0176 (13)0.0158 (13)0.0010 (12)
C110.0440 (18)0.0397 (14)0.065 (2)0.0079 (13)0.0191 (16)0.0050 (14)
C120.061 (2)0.0460 (16)0.064 (2)0.0236 (15)0.0350 (18)0.0155 (15)
C130.0463 (17)0.0345 (13)0.0397 (15)0.0065 (12)0.0091 (13)0.0031 (12)
C140.054 (2)0.0409 (15)0.0485 (18)0.0132 (13)0.0121 (16)0.0005 (13)
C150.0536 (19)0.0475 (16)0.0480 (17)0.0013 (13)0.0078 (15)0.0024 (13)
C160.0483 (18)0.0450 (15)0.0387 (15)0.0019 (13)0.0088 (14)0.0037 (12)
C170.0489 (19)0.0520 (17)0.0626 (19)0.0003 (14)0.0081 (16)0.0030 (15)
C180.061 (2)0.0570 (19)0.069 (2)0.0097 (16)0.0209 (18)0.0068 (17)
C190.101 (3)0.0482 (17)0.055 (2)0.0102 (19)0.032 (2)0.0009 (16)
C200.095 (3)0.058 (2)0.053 (2)0.004 (2)0.0001 (19)0.0128 (16)
C210.068 (2)0.0598 (19)0.0486 (18)0.0066 (16)0.0000 (17)0.0059 (15)
C220.095 (3)0.134 (3)0.046 (2)0.025 (3)0.020 (2)0.017 (2)
S230.0509 (5)0.0466 (4)0.0560 (5)0.0018 (3)0.0174 (4)0.0017 (3)
O240.131 (2)0.0614 (14)0.0900 (17)0.0137 (14)0.0658 (17)0.0192 (13)
O250.0813 (18)0.0706 (14)0.0855 (16)0.0086 (12)0.0343 (14)0.0294 (13)
O260.0492 (15)0.114 (2)0.1010 (19)0.0060 (14)0.0025 (14)0.0007 (16)
C270.058 (2)0.0492 (17)0.060 (2)0.0005 (15)0.0213 (17)0.0023 (15)
F280.0559 (15)0.234 (3)0.1091 (19)0.0300 (17)0.0292 (14)0.015 (2)
F290.159 (3)0.0953 (15)0.1012 (17)0.0266 (15)0.0826 (17)0.0321 (13)
F300.156 (2)0.0668 (13)0.172 (2)0.0008 (14)0.108 (2)0.0329 (14)
Geometric parameters (Å, º) top
C1—C21.364 (5)C13—C141.416 (4)
C1—C111.421 (4)C15—C161.528 (4)
C1—H10.9300C15—H15A0.9700
C2—C31.387 (6)C15—H15B0.9700
C2—H20.9300C16—C211.374 (4)
C3—C41.346 (6)C16—C171.382 (4)
C3—H30.9300C17—C181.378 (4)
C4—C121.403 (5)C17—H170.9300
C4—H40.9300C18—C191.367 (4)
C5—C61.342 (5)C18—H180.9300
C5—C141.428 (4)C19—C201.363 (5)
C5—H50.9300C19—H190.9300
C6—C71.372 (5)C20—C211.378 (4)
C6—H60.9300C20—H200.9300
C7—C81.348 (4)C21—H210.9300
C7—H70.9300C22—H22A0.9600
C8—C131.425 (4)C22—H22B0.9600
C8—H80.9300C22—H22C0.9600
C9—C131.396 (4)S23—O241.415 (2)
C9—C111.402 (4)S23—O251.425 (2)
C9—C151.508 (4)S23—O261.425 (2)
N10—C141.350 (4)S23—C271.796 (3)
N10—C121.361 (4)C27—F281.293 (4)
N10—C221.495 (4)C27—F301.297 (3)
C11—C121.432 (4)C27—F291.322 (3)
C2—C1—C11120.1 (4)C9—C15—C16114.0 (2)
C2—C1—H1120.0C9—C15—H15A108.8
C11—C1—H1120.0C16—C15—H15A108.8
C1—C2—C3119.2 (4)C9—C15—H15B108.8
C1—C2—H2120.4C16—C15—H15B108.8
C3—C2—H2120.4H15A—C15—H15B107.7
C4—C3—C2123.4 (4)C21—C16—C17118.1 (3)
C4—C3—H3118.3C21—C16—C15120.4 (3)
C2—C3—H3118.3C17—C16—C15121.5 (2)
C3—C4—C12119.6 (4)C18—C17—C16120.6 (3)
C3—C4—H4120.2C18—C17—H17119.7
C12—C4—H4120.2C16—C17—H17119.7
C6—C5—C14120.2 (3)C19—C18—C17120.4 (3)
C6—C5—H5119.9C19—C18—H18119.8
C14—C5—H5119.9C17—C18—H18119.8
C5—C6—C7121.7 (3)C20—C19—C18119.6 (3)
C5—C6—H6119.2C20—C19—H19120.2
C7—C6—H6119.2C18—C19—H19120.2
C8—C7—C6120.2 (4)C19—C20—C21120.3 (3)
C8—C7—H7119.9C19—C20—H20119.9
C6—C7—H7119.9C21—C20—H20119.9
C7—C8—C13121.9 (3)C16—C21—C20121.1 (3)
C7—C8—H8119.1C16—C21—H21119.5
C13—C8—H8119.1C20—C21—H21119.5
C13—C9—C11118.7 (3)N10—C22—H22A109.5
C13—C9—C15121.0 (3)N10—C22—H22B109.5
C11—C9—C15120.2 (3)H22A—C22—H22B109.5
C14—N10—C12122.2 (3)N10—C22—H22C109.5
C14—N10—C22118.6 (3)H22A—C22—H22C109.5
C12—N10—C22119.2 (3)H22B—C22—H22C109.5
C9—C11—C1121.4 (3)O24—S23—O25115.13 (15)
C9—C11—C12119.4 (3)O24—S23—O26115.57 (17)
C1—C11—C12119.2 (3)O25—S23—O26113.74 (15)
N10—C12—C4122.0 (3)O24—S23—C27103.79 (14)
N10—C12—C11119.5 (3)O25—S23—C27103.62 (15)
C4—C12—C11118.5 (3)O26—S23—C27102.73 (16)
C9—C13—C14120.4 (3)F28—C27—F30107.4 (3)
C9—C13—C8122.6 (2)F28—C27—F29105.1 (3)
C14—C13—C8117.0 (3)F30—C27—F29105.1 (3)
N10—C14—C13119.6 (3)F28—C27—S23113.2 (2)
N10—C14—C5121.5 (3)F30—C27—S23113.3 (2)
C13—C14—C5118.9 (3)F29—C27—S23112.0 (2)
C11—C1—C2—C30.2 (5)C12—N10—C14—C5179.9 (2)
C1—C2—C3—C41.2 (6)C22—N10—C14—C52.4 (4)
C2—C3—C4—C120.6 (6)C9—C13—C14—N102.8 (4)
C14—C5—C6—C70.4 (5)C8—C13—C14—N10177.3 (2)
C5—C6—C7—C81.6 (5)C9—C13—C14—C5176.4 (2)
C6—C7—C8—C130.9 (4)C8—C13—C14—C53.5 (4)
C13—C9—C11—C1179.0 (2)C6—C5—C14—N10177.8 (3)
C15—C9—C11—C12.0 (4)C6—C5—C14—C133.0 (4)
C13—C9—C11—C120.7 (4)C13—C9—C15—C1699.8 (3)
C15—C9—C11—C12178.3 (2)C11—C9—C15—C1681.1 (3)
C2—C1—C11—C9178.5 (3)C9—C15—C16—C21136.1 (3)
C2—C1—C11—C121.2 (4)C9—C15—C16—C1745.8 (4)
C14—N10—C12—C4177.2 (3)C21—C16—C17—C181.1 (5)
C22—N10—C12—C40.4 (4)C15—C16—C17—C18177.0 (3)
C14—N10—C12—C113.7 (4)C16—C17—C18—C190.5 (5)
C22—N10—C12—C11178.8 (3)C17—C18—C19—C201.0 (5)
C3—C4—C12—N10178.3 (3)C18—C19—C20—C211.9 (5)
C3—C4—C12—C110.9 (5)C17—C16—C21—C200.2 (5)
C9—C11—C12—N102.8 (4)C15—C16—C21—C20177.9 (3)
C1—C11—C12—N10177.5 (2)C19—C20—C21—C161.3 (5)
C9—C11—C12—C4178.0 (3)O24—S23—C27—F2854.1 (3)
C1—C11—C12—C41.7 (4)O25—S23—C27—F2866.5 (3)
C11—C9—C13—C143.5 (4)O26—S23—C27—F28174.8 (3)
C15—C9—C13—C14175.5 (2)O24—S23—C27—F30176.8 (3)
C11—C9—C13—C8176.6 (2)O25—S23—C27—F3056.1 (3)
C15—C9—C13—C84.4 (4)O26—S23—C27—F3062.5 (3)
C7—C8—C13—C9178.3 (2)O24—S23—C27—F2964.6 (3)
C7—C8—C13—C141.7 (4)O25—S23—C27—F29174.8 (2)
C12—N10—C14—C130.9 (4)O26—S23—C27—F2956.2 (2)
C22—N10—C14—C13178.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O26i0.932.493.398 (5)167
C3—H3···Cg4ii0.932.743.630 (5)161
C15—H15B···O25iii0.972.493.423 (4)160
C22—H22B···O25iv0.962.563.386 (5)144
C22—H22C···O240.962.563.361 (5)141
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1; (iv) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H18N+·CF3O3S
Mr433.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)14.6211 (7), 8.2514 (2), 17.2900 (8)
β (°) 107.707 (5)
V3)1987.12 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.41 × 0.25 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.953, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
16520, 3528, 2191
Rint0.048
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.153, 1.06
No. of reflections3528
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O26i0.932.493.398 (5)167
C3—H3···Cg4ii0.932.743.630 (5)161
C15—H15B···O25iii0.972.493.423 (4)160
C22—H22B···O25iv0.962.563.386 (5)144
C22—H22C···O240.962.563.361 (5)141
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1; (iv) x+3/2, y1/2, z+1/2.
C–F···π and S–O···π interactions (Å,°) top
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.
XIJI···JX···JXI···J
C27F30Cg3v3.115 (3)4.233 (3)143.0 (2)
S23O26Cg1v3.085 (3)4.167 (2)131.4 (2)
Symmetry code: (v) –x + 3/2, y + 1/2, –z + 1/2.
ππ interactions (Å, °) top
Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
12iii3.806 (2)2.11 (15)3.575 (2)1.306 (2)
21iii3.806 (2)2.11 (15)3.530 (2)1.423 (2)
22iii3.886 (2)0.02 (15)3.563 (2)1.551 (2)
Symmetry code: (iii) –x + 2, –y + 1, –z + 1.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant DS No. 8220-4-0087-9).

References

First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationHuntress, E. H. & Shaw, E. N. (1948). J. Org. Chem. 13, 674–675.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKing, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Kowalska, K., Krzymiński, K. & Błażejowski, J. (2007). Acta Cryst. E63, o2670–o2672.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationTrzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826–o827.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWróblewska, A., Huta, O. M., Midyanyj, S. V., Patsay, I. O., Rak, J. & Błażejowski, J. (2004). J. Org. Chem. 69, 1607–1614.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1548-o1549
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds