organic compounds
1-(4-Fluorophenyl)thiourea
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstr. 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com
In the title compound, C7H7FN2S, the aromatic ring plane and the thiourea unit are twisted with a torsion angle C—C—N—C7 of 44.6 (2)°. In the crystal, N—H⋯S and N—H⋯F intermolecular hydrogen bonds link the molecules into infinite sheets that are stacked along the c axis.
Related literature
For the biological activity of fluorinated thioureas, see: Sun et al. (2006); Saeed et al. (2009); Xu et al. (2003). For the use of fluorinated thioureas in organic synthesis, see: Nosova et al. (2006, 2007); Lipunova et al. (2008); Berkessel et al. (2006). N′-(2-fluorobenzoyl)thiourea derivatives are suitable substrates for studying intramolecular hydrogen bonds and Fermi resonance, see: Hritzová & Koščík (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810020246/pb2028sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810020246/pb2028Isup2.hkl
4-Fluorobenzoylisothiocyante (1 mmol) in acetone was treated with ammonia (1 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was poured into aq HCl and the precipitated product was rerystallized from in methanol to afforded the title compound (78 %) as colourless crystals: Anal. calcd. for C7H7N2O2FS: C, 49.40; H, 4.15; N, 16.46; S, 18.84%; found: C, 49.02; H, 4.17; N, 16.41; S, 18.91%.
Hydrogen atoms were clearly identified in difference Fourier syntheses, idealized and refined at calculated positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(C/Neq).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C7H7FN2S | F(000) = 352 |
Mr = 170.21 | Dx = 1.480 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1384 (8) Å | Cell parameters from 3596 reflections |
b = 8.4338 (7) Å | θ = 3.2–28.3° |
c = 10.5334 (9) Å | µ = 0.37 mm−1 |
β = 109.796 (2)° | T = 120 K |
V = 763.85 (11) Å3 | Block, colourless |
Z = 4 | 0.43 × 0.39 × 0.29 mm |
Bruker SMART APEX diffractometer | 1814 independent reflections |
Radiation source: sealed tube | 1645 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 27.9°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −12→12 |
Tmin = 0.857, Tmax = 0.900 | k = −10→11 |
6816 measured reflections | l = −13→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3192P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
1814 reflections | Δρmax = 0.44 e Å−3 |
101 parameters | Δρmin = −0.31 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.009 (3) |
C7H7FN2S | V = 763.85 (11) Å3 |
Mr = 170.21 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.1384 (8) Å | µ = 0.37 mm−1 |
b = 8.4338 (7) Å | T = 120 K |
c = 10.5334 (9) Å | 0.43 × 0.39 × 0.29 mm |
β = 109.796 (2)° |
Bruker SMART APEX diffractometer | 1814 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1645 reflections with I > 2σ(I) |
Tmin = 0.857, Tmax = 0.900 | Rint = 0.026 |
6816 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.44 e Å−3 |
1814 reflections | Δρmin = −0.31 e Å−3 |
101 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.02935 (4) | 0.53586 (4) | 0.71645 (4) | 0.02753 (15) | |
F1 | 0.35073 (11) | 0.23014 (12) | 0.98827 (10) | 0.0374 (3) | |
N1 | 0.84161 (13) | 0.39046 (13) | 0.81980 (12) | 0.0224 (3) | |
H1A | 0.8874 | 0.3066 | 0.8006 | 0.027* | |
N2 | 0.85423 (14) | 0.66261 (14) | 0.84570 (13) | 0.0257 (3) | |
H2B | 0.7864 | 0.6574 | 0.8882 | 0.031* | |
H2C | 0.8920 | 0.7550 | 0.8332 | 0.031* | |
C1 | 0.71613 (14) | 0.35888 (15) | 0.86719 (13) | 0.0195 (3) | |
C2 | 0.57627 (15) | 0.44244 (16) | 0.81997 (14) | 0.0214 (3) | |
H2A | 0.5656 | 0.5286 | 0.7594 | 0.026* | |
C3 | 0.45251 (16) | 0.39984 (17) | 0.86130 (14) | 0.0247 (3) | |
H3A | 0.3572 | 0.4568 | 0.8308 | 0.030* | |
C4 | 0.47151 (16) | 0.27309 (18) | 0.94755 (14) | 0.0254 (3) | |
C5 | 0.60776 (17) | 0.18705 (17) | 0.99488 (14) | 0.0261 (3) | |
H5A | 0.6167 | 0.0995 | 1.0538 | 0.031* | |
C6 | 0.73102 (16) | 0.23144 (17) | 0.95434 (14) | 0.0233 (3) | |
H6A | 0.8262 | 0.1745 | 0.9863 | 0.028* | |
C7 | 0.89954 (15) | 0.53115 (15) | 0.80043 (14) | 0.0206 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0258 (2) | 0.0168 (2) | 0.0483 (3) | −0.00188 (12) | 0.02351 (17) | −0.00191 (14) |
F1 | 0.0391 (5) | 0.0376 (5) | 0.0475 (6) | −0.0133 (4) | 0.0304 (4) | −0.0076 (4) |
N1 | 0.0228 (5) | 0.0154 (5) | 0.0330 (6) | 0.0021 (4) | 0.0145 (5) | 0.0018 (4) |
N2 | 0.0267 (6) | 0.0174 (6) | 0.0386 (7) | −0.0017 (4) | 0.0184 (5) | −0.0025 (5) |
C1 | 0.0198 (6) | 0.0188 (6) | 0.0207 (6) | −0.0022 (5) | 0.0080 (5) | −0.0014 (5) |
C2 | 0.0233 (6) | 0.0190 (6) | 0.0222 (6) | 0.0008 (5) | 0.0080 (5) | 0.0007 (5) |
C3 | 0.0218 (6) | 0.0250 (7) | 0.0284 (7) | −0.0005 (5) | 0.0101 (5) | −0.0055 (5) |
C4 | 0.0272 (7) | 0.0276 (7) | 0.0262 (7) | −0.0106 (5) | 0.0154 (5) | −0.0091 (5) |
C5 | 0.0353 (7) | 0.0230 (7) | 0.0207 (6) | −0.0069 (6) | 0.0103 (6) | 0.0000 (5) |
C6 | 0.0250 (6) | 0.0201 (6) | 0.0235 (6) | −0.0010 (5) | 0.0066 (5) | 0.0013 (5) |
C7 | 0.0164 (6) | 0.0189 (6) | 0.0261 (7) | 0.0003 (4) | 0.0066 (5) | 0.0014 (5) |
S1—C7 | 1.7035 (14) | C1—C2 | 1.3954 (18) |
F1—C4 | 1.3616 (15) | C2—C3 | 1.3897 (19) |
N1—C7 | 1.3427 (17) | C2—H2A | 0.9500 |
N1—C1 | 1.4222 (15) | C3—C4 | 1.375 (2) |
N1—H1A | 0.8800 | C3—H3A | 0.9500 |
N2—C7 | 1.3274 (17) | C4—C5 | 1.380 (2) |
N2—H2B | 0.8800 | C5—C6 | 1.3846 (19) |
N2—H2C | 0.8800 | C5—H5A | 0.9500 |
C1—C6 | 1.3899 (19) | C6—H6A | 0.9500 |
C7—N1—C1 | 128.69 (11) | C2—C3—H3A | 120.9 |
C7—N1—H1A | 115.7 | F1—C4—C3 | 118.71 (13) |
C1—N1—H1A | 115.7 | F1—C4—C5 | 118.34 (13) |
C7—N2—H2B | 120.0 | C3—C4—C5 | 122.95 (13) |
C7—N2—H2C | 120.0 | C4—C5—C6 | 118.37 (13) |
H2B—N2—H2C | 120.0 | C4—C5—H5A | 120.8 |
C6—C1—C2 | 119.93 (12) | C6—C5—H5A | 120.8 |
C6—C1—N1 | 117.80 (12) | C5—C6—C1 | 120.32 (13) |
C2—C1—N1 | 122.03 (12) | C5—C6—H6A | 119.8 |
C3—C2—C1 | 120.14 (13) | C1—C6—H6A | 119.8 |
C3—C2—H2A | 119.9 | N2—C7—N1 | 119.76 (12) |
C1—C2—H2A | 119.9 | N2—C7—S1 | 121.59 (10) |
C4—C3—C2 | 118.28 (13) | N1—C7—S1 | 118.64 (10) |
C4—C3—H3A | 120.9 | ||
C7—N1—C1—C6 | −141.01 (15) | F1—C4—C5—C6 | −179.50 (12) |
C7—N1—C1—C2 | 44.6 (2) | C3—C4—C5—C6 | 0.5 (2) |
C6—C1—C2—C3 | 0.9 (2) | C4—C5—C6—C1 | −0.5 (2) |
N1—C1—C2—C3 | 175.14 (12) | C2—C1—C6—C5 | −0.1 (2) |
C1—C2—C3—C4 | −0.9 (2) | N1—C1—C6—C5 | −174.66 (12) |
C2—C3—C4—F1 | −179.79 (12) | C1—N1—C7—N2 | 10.3 (2) |
C2—C3—C4—C5 | 0.2 (2) | C1—N1—C7—S1 | −169.25 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.88 | 2.43 | 3.2841 (12) | 163 |
N2—H2B···F1ii | 0.88 | 2.30 | 3.0989 (15) | 152 |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C7H7FN2S |
Mr | 170.21 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 9.1384 (8), 8.4338 (7), 10.5334 (9) |
β (°) | 109.796 (2) |
V (Å3) | 763.85 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.37 |
Crystal size (mm) | 0.43 × 0.39 × 0.29 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.857, 0.900 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6816, 1814, 1645 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.097, 1.05 |
No. of reflections | 1814 |
No. of parameters | 101 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.31 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.88 | 2.43 | 3.2841 (12) | 163.1 |
N2—H2B···F1ii | 0.88 | 2.30 | 3.0989 (15) | 151.8 |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2. |
Acknowledgements
The authors gratefully acknowledge a research grant from the Higher Education Commission of Pakistan under project No. 20-Miscel/R&D/00/3834.
References
Berkessel, A., Roland, K. & Neudorfl, J. M. (2006). Org. Lett. 8, 4195–4198. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hritzová, O. & Koščík, D. (2008). Coll. Czech. Chem. Commun. 59, 951–956. Google Scholar
Lipunova, G. N., Nosova, E. V., Laeva, A. A., Trashakhova, T. V., Slepukhin, P. A. & Charushin, V. N. (2008). Russ. J. Org. Chem. 44, 741–749. Web of Science CrossRef CAS Google Scholar
Nosova, E. V. G. N., Lipunova, G. N., Laeva, A. A. & Charushin, V. N. (2006). Zh. Org. Khim. 42, 1544–1550. CAS Google Scholar
Nosova, E. V. G. N., Lipunova, G. N., Laeva, A. A., Sidorova, L. P. & Charushin, V. N. (2007). Zh. Org. Khim. 43, 68–76. Google Scholar
Saeed, A., Shaheen, U., Hameed, A. & Naqvi, S. Z. H. (2009). J. Fluorine Chem. 130, 1028–1034. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162–166. Web of Science CrossRef PubMed CAS Google Scholar
Xu, X., Qian, X., Li, Z., Huang, Q. & Chen, G. (2003). J. Fluorine Chem. 121, 51–54. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Fluorinated thioureas are an imoprtant class of thioureas. Theser are versatile synthons for various fluorine-containing heterocycles: [1,3]-benzothiazin-4-ones (Nosova et al.,2006, 2007) 1-aryl-2-ethylthio-quinazolin-4-one, thiazolidine and 1H-1,2,4-triazoles (Lipunova et al., 2008). Fluorinated thioureas exhibit a variety of biological activities: potent influenza virus neuraminidase inhibitors (Sun et al., 2006), antimicrobial (Saeed et al., 2009) and insecticidal activities (Xu et al., 2003). Moreover, fluorinated bis-thiourea derivatives are also used as organocatalyst in Morita-Baylis-Hillman reaction (Berkessel et al., 2006) and N-Substituted N'-(2-fluorobenzoyl)thiourea derivatives are suitable substrates for studying Intramolecular Hydrogen Bonds and Fermi Resonance (Hritzová & Koščík 2008). The aromatic ring plane and the thiourea moiety are twisted with a torsion angle C2–C1–N1–C7 of 44.6 (2)°. N(1)–H···S and N(2)–H···F intermolecular hydrogen bonds link molecules to endless 2D sheets that are stacked along the c axis.