organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Fluoro­phen­yl)thio­urea

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstr. 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 14 April 2010; accepted 28 May 2010; online 5 June 2010)

In the title compound, C7H7FN2S, the aromatic ring plane and the thio­urea unit are twisted with a torsion angle C—C—N—C7 of 44.6 (2)°. In the crystal, N—H⋯S and N—H⋯F inter­molecular hydrogen bonds link the mol­ecules into infinite sheets that are stacked along the c axis.

Related literature

For the biological activity of fluorinated thio­ureas, see: Sun et al. (2006[Sun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162-166.]); Saeed et al. (2009[Saeed, A., Shaheen, U., Hameed, A. & Naqvi, S. Z. H. (2009). J. Fluorine Chem. 130, 1028-1034.]); Xu et al. (2003[Xu, X., Qian, X., Li, Z., Huang, Q. & Chen, G. (2003). J. Fluorine Chem. 121, 51-54.]). For the use of fluorinated thio­ureas in organic synthesis, see: Nosova et al. (2006[Nosova, E. V. G. N., Lipunova, G. N., Laeva, A. A. & Charushin, V. N. (2006). Zh. Org. Khim. 42, 1544-1550.], 2007[Nosova, E. V. G. N., Lipunova, G. N., Laeva, A. A., Sidorova, L. P. & Charushin, V. N. (2007). Zh. Org. Khim. 43, 68-76.]); Lipunova et al. (2008[Lipunova, G. N., Nosova, E. V., Laeva, A. A., Trashakhova, T. V., Slepukhin, P. A. & Charushin, V. N. (2008). Russ. J. Org. Chem. 44, 741-749.]); Berkessel et al. (2006[Berkessel, A., Roland, K. & Neudorfl, J. M. (2006). Org. Lett. 8, 4195-4198.]). N′-(2-fluoro­benzo­yl)thio­urea derivatives are suitable substrates for studying intra­molecular hydrogen bonds and Fermi resonance, see: Hritzová & Koščík (2008[Hritzová, O. & Koščík, D. (2008). Coll. Czech. Chem. Commun. 59, 951-956.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7FN2S

  • Mr = 170.21

  • Monoclinic, P 21 /c

  • a = 9.1384 (8) Å

  • b = 8.4338 (7) Å

  • c = 10.5334 (9) Å

  • β = 109.796 (2)°

  • V = 763.85 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 120 K

  • 0.43 × 0.39 × 0.29 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.857, Tmax = 0.900

  • 6816 measured reflections

  • 1814 independent reflections

  • 1645 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.05

  • 1814 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.88 2.43 3.2841 (12) 163
N2—H2B⋯F1ii 0.88 2.30 3.0989 (15) 152
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Fluorinated thioureas are an imoprtant class of thioureas. Theser are versatile synthons for various fluorine-containing heterocycles: [1,3]-benzothiazin-4-ones (Nosova et al.,2006, 2007) 1-aryl-2-ethylthio-quinazolin-4-one, thiazolidine and 1H-1,2,4-triazoles (Lipunova et al., 2008). Fluorinated thioureas exhibit a variety of biological activities: potent influenza virus neuraminidase inhibitors (Sun et al., 2006), antimicrobial (Saeed et al., 2009) and insecticidal activities (Xu et al., 2003). Moreover, fluorinated bis-thiourea derivatives are also used as organocatalyst in Morita-Baylis-Hillman reaction (Berkessel et al., 2006) and N-Substituted N'-(2-fluorobenzoyl)thiourea derivatives are suitable substrates for studying Intramolecular Hydrogen Bonds and Fermi Resonance (Hritzová & Koščík 2008). The aromatic ring plane and the thiourea moiety are twisted with a torsion angle C2–C1–N1–C7 of 44.6 (2)°. N(1)–H···S and N(2)–H···F intermolecular hydrogen bonds link molecules to endless 2D sheets that are stacked along the c axis.

Related literature top

For the biological activity of fluorinated thioureas, see: Sun et al. (2006); Saeed et al. (2009); Xu et al. (2003). For the use of fluorinated thioureas in organic synthesis, see: Nosova et al. (2006, 2007); Lipunova et al. (2008); Berkessel et al. (2006). N'-(2-fluorobenzoyl)thiourea derivatives are suitable substrates for studying intramolecular hydrogen bonds and Fermi resonance, see: Hritzová & Koščík (2008).

Experimental top

4-Fluorobenzoylisothiocyante (1 mmol) in acetone was treated with ammonia (1 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was poured into aq HCl and the precipitated product was rerystallized from in methanol to afforded the title compound (78 %) as colourless crystals: Anal. calcd. for C7H7N2O2FS: C, 49.40; H, 4.15; N, 16.46; S, 18.84%; found: C, 49.02; H, 4.17; N, 16.41; S, 18.91%.

Refinement top

Hydrogen atoms were clearly identified in difference Fourier syntheses, idealized and refined at calculated positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(C/Neq).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along [001] with intermolecular hydrogen bonds indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.
1-(4-Fluorophenyl)thiourea top
Crystal data top
C7H7FN2SF(000) = 352
Mr = 170.21Dx = 1.480 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1384 (8) ÅCell parameters from 3596 reflections
b = 8.4338 (7) Åθ = 3.2–28.3°
c = 10.5334 (9) ŵ = 0.37 mm1
β = 109.796 (2)°T = 120 K
V = 763.85 (11) Å3Block, colourless
Z = 40.43 × 0.39 × 0.29 mm
Data collection top
Bruker SMART APEX
diffractometer
1814 independent reflections
Radiation source: sealed tube1645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.857, Tmax = 0.900k = 1011
6816 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3192P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1814 reflectionsΔρmax = 0.44 e Å3
101 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (3)
Crystal data top
C7H7FN2SV = 763.85 (11) Å3
Mr = 170.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1384 (8) ŵ = 0.37 mm1
b = 8.4338 (7) ÅT = 120 K
c = 10.5334 (9) Å0.43 × 0.39 × 0.29 mm
β = 109.796 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1814 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1645 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.900Rint = 0.026
6816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
1814 reflectionsΔρmin = 0.31 e Å3
101 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.02935 (4)0.53586 (4)0.71645 (4)0.02753 (15)
F10.35073 (11)0.23014 (12)0.98827 (10)0.0374 (3)
N10.84161 (13)0.39046 (13)0.81980 (12)0.0224 (3)
H1A0.88740.30660.80060.027*
N20.85423 (14)0.66261 (14)0.84570 (13)0.0257 (3)
H2B0.78640.65740.88820.031*
H2C0.89200.75500.83320.031*
C10.71613 (14)0.35888 (15)0.86719 (13)0.0195 (3)
C20.57627 (15)0.44244 (16)0.81997 (14)0.0214 (3)
H2A0.56560.52860.75940.026*
C30.45251 (16)0.39984 (17)0.86130 (14)0.0247 (3)
H3A0.35720.45680.83080.030*
C40.47151 (16)0.27309 (18)0.94755 (14)0.0254 (3)
C50.60776 (17)0.18705 (17)0.99488 (14)0.0261 (3)
H5A0.61670.09951.05380.031*
C60.73102 (16)0.23144 (17)0.95434 (14)0.0233 (3)
H6A0.82620.17450.98630.028*
C70.89954 (15)0.53115 (15)0.80043 (14)0.0206 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0258 (2)0.0168 (2)0.0483 (3)0.00188 (12)0.02351 (17)0.00191 (14)
F10.0391 (5)0.0376 (5)0.0475 (6)0.0133 (4)0.0304 (4)0.0076 (4)
N10.0228 (5)0.0154 (5)0.0330 (6)0.0021 (4)0.0145 (5)0.0018 (4)
N20.0267 (6)0.0174 (6)0.0386 (7)0.0017 (4)0.0184 (5)0.0025 (5)
C10.0198 (6)0.0188 (6)0.0207 (6)0.0022 (5)0.0080 (5)0.0014 (5)
C20.0233 (6)0.0190 (6)0.0222 (6)0.0008 (5)0.0080 (5)0.0007 (5)
C30.0218 (6)0.0250 (7)0.0284 (7)0.0005 (5)0.0101 (5)0.0055 (5)
C40.0272 (7)0.0276 (7)0.0262 (7)0.0106 (5)0.0154 (5)0.0091 (5)
C50.0353 (7)0.0230 (7)0.0207 (6)0.0069 (6)0.0103 (6)0.0000 (5)
C60.0250 (6)0.0201 (6)0.0235 (6)0.0010 (5)0.0066 (5)0.0013 (5)
C70.0164 (6)0.0189 (6)0.0261 (7)0.0003 (4)0.0066 (5)0.0014 (5)
Geometric parameters (Å, º) top
S1—C71.7035 (14)C1—C21.3954 (18)
F1—C41.3616 (15)C2—C31.3897 (19)
N1—C71.3427 (17)C2—H2A0.9500
N1—C11.4222 (15)C3—C41.375 (2)
N1—H1A0.8800C3—H3A0.9500
N2—C71.3274 (17)C4—C51.380 (2)
N2—H2B0.8800C5—C61.3846 (19)
N2—H2C0.8800C5—H5A0.9500
C1—C61.3899 (19)C6—H6A0.9500
C7—N1—C1128.69 (11)C2—C3—H3A120.9
C7—N1—H1A115.7F1—C4—C3118.71 (13)
C1—N1—H1A115.7F1—C4—C5118.34 (13)
C7—N2—H2B120.0C3—C4—C5122.95 (13)
C7—N2—H2C120.0C4—C5—C6118.37 (13)
H2B—N2—H2C120.0C4—C5—H5A120.8
C6—C1—C2119.93 (12)C6—C5—H5A120.8
C6—C1—N1117.80 (12)C5—C6—C1120.32 (13)
C2—C1—N1122.03 (12)C5—C6—H6A119.8
C3—C2—C1120.14 (13)C1—C6—H6A119.8
C3—C2—H2A119.9N2—C7—N1119.76 (12)
C1—C2—H2A119.9N2—C7—S1121.59 (10)
C4—C3—C2118.28 (13)N1—C7—S1118.64 (10)
C4—C3—H3A120.9
C7—N1—C1—C6141.01 (15)F1—C4—C5—C6179.50 (12)
C7—N1—C1—C244.6 (2)C3—C4—C5—C60.5 (2)
C6—C1—C2—C30.9 (2)C4—C5—C6—C10.5 (2)
N1—C1—C2—C3175.14 (12)C2—C1—C6—C50.1 (2)
C1—C2—C3—C40.9 (2)N1—C1—C6—C5174.66 (12)
C2—C3—C4—F1179.79 (12)C1—N1—C7—N210.3 (2)
C2—C3—C4—C50.2 (2)C1—N1—C7—S1169.25 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.882.433.2841 (12)163
N2—H2B···F1ii0.882.303.0989 (15)152
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC7H7FN2S
Mr170.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.1384 (8), 8.4338 (7), 10.5334 (9)
β (°) 109.796 (2)
V3)763.85 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.43 × 0.39 × 0.29
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.857, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
6816, 1814, 1645
Rint0.026
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.05
No. of reflections1814
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.882.433.2841 (12)163.1
N2—H2B···F1ii0.882.303.0989 (15)151.8
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors gratefully acknowledge a research grant from the Higher Education Commission of Pakistan under project No. 20-Miscel/R&D/00/3834.

References

First citationBerkessel, A., Roland, K. & Neudorfl, J. M. (2006). Org. Lett. 8, 4195–4198.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHritzová, O. & Koščík, D. (2008). Coll. Czech. Chem. Commun. 59, 951–956.  Google Scholar
First citationLipunova, G. N., Nosova, E. V., Laeva, A. A., Trashakhova, T. V., Slepukhin, P. A. & Charushin, V. N. (2008). Russ. J. Org. Chem. 44, 741–749.  Web of Science CrossRef CAS Google Scholar
First citationNosova, E. V. G. N., Lipunova, G. N., Laeva, A. A. & Charushin, V. N. (2006). Zh. Org. Khim. 42, 1544–1550.  CAS Google Scholar
First citationNosova, E. V. G. N., Lipunova, G. N., Laeva, A. A., Sidorova, L. P. & Charushin, V. N. (2007). Zh. Org. Khim. 43, 68–76.  Google Scholar
First citationSaeed, A., Shaheen, U., Hameed, A. & Naqvi, S. Z. H. (2009). J. Fluorine Chem. 130, 1028–1034.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162–166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, X., Qian, X., Li, Z., Huang, Q. & Chen, G. (2003). J. Fluorine Chem. 121, 51–54.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds