organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino­benzoic acid–1,2-bis­­(4-pyrid­yl)ethane (2/1)

aDepartment of Biotechnology, Yuanpei University, HsinChu, Taiwan 30015, and bDepartment of Medical Laboratory Science Biotechnology, Yuanpei University, HsinChu, Taiwan 30015
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 29 April 2010; accepted 28 May 2010; online 5 June 2010)

In the title compound, C12H12N2·2C7H7NO2, the 4-amino­benzoic acid mol­ecules are linked by O—H⋯N hydrogen bonds to 1,2-bis­(4-pyrid­yl)ethane, forming linear hydrogen bonded chains parallel to [2[\overline{1}]1]. The structure exhibits a hydrogen-bonding network involving COOH⋯N(pyrid­yl) and amine and carb­oxy­lic N—H⋯ O inter­actions. In addition, ππ stacking inter­actions [centroid–centroid distance = 3.8622 (14) Å] are also present.

Related literature

For linear hydrogen bonding associations involving 4-amino­benzoic acid, see: Smith et al. (1997[Smith, G., Baldry, K. E., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 727-736.]). For related structures, see: Smith et al. (2000[Smith, G., Bott, R. C. & Lynch, D. E. (2000). Acta Cryst. C56, 1155-1156.], 2005[Smith, G., Wermuth, U. D. & White, J. M. (2005). Acta Cryst. E61, o313-o316.]); Lynch & McClenaghan (2001[Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. C57, 830-832.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2·2C7H7NO2

  • Mr = 458.51

  • Monoclinic, P 21 /c

  • a = 7.3556 (10) Å

  • b = 23.230 (3) Å

  • c = 7.9373 (11) Å

  • β = 115.579 (2)°

  • V = 1223.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 297 K

  • 0.76 × 0.34 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SMART; Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.674, Tmax = 1.000

  • 6871 measured reflections

  • 2406 independent reflections

  • 1530 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.165

  • S = 1.03

  • 2406 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.90 (3) 2.14 (3) 3.030 (3) 171 (3)
N1—H1B⋯O1ii 0.93 (3) 2.16 (3) 3.081 (3) 172 (2)
O2—H2A⋯N2iii 0.90 1.72 2.613 (2) 173
Symmetry codes: (i) x+1, y, z+1; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

4-Aminobenzoic acid is a useful ligand for structure extension through both the carboxylic acid and amine functional groups, forming linear hydrogen bonding associations (Smith et al., 2005). Other related reports with 4-aminobenzoic acid and Lewis base such as 4-(4-nitrobenzyl)pyridine (Smith, 1997), 4-aminobenzonitrile (Smith et al., 2000) and 2-amino-4-(4-pyridyl)pyrimidine (Lynch & McClenaghan, 2001).

We present here the crystal structure analysis of the 2:1 4-aminobenzoic acid and 1,2-bis(4-pyridyl)ethane adduct (Fig 1). The structure of the title compound comprises two 4-aminobenzoic acid molecules and one 1,2-bis(4-pyridyl)ethane molecule, with no proton transfer. In the structure, the molecules associate 4-aminobenzoic acid and 1,2-bis(4-pyridyl)ethane via carboxylic and pyridine group O—H···N [ O···N 2.613 (2) Å ] D22 12( Etter et al., 1990), forming linear hydrogen bonding parallel to [ 2 1 1], further connect into a three dimensional network via amine and carboxylic N—H··· O [N···O 3.030 (3) and 3.081 (3) Å ], respectively.

The title compound's supramolecular structure can be readily analyzed in terms of pyridyl atom N2 acts as hydrogen-bond donor to carboxyl atom O2. Similarly, O1 acts as hydrogen-bond donor to amino group N1, respectively (Table 1 and Fig. 2). Furthermore, p -p ring stacking interaction is between neighboring heteraromatic ring in the structure. The distance between Cg1 (N2/C8—C12)···Cg1i is 3.8622 (14) Å[ symmetry code: (i) = 2-X,1-Y,1-Z].

Related literature top

For linear hydrogen bonding associations involving 4-aminobenzoic acid, see: Smith et al. (1997). For related structures, see: Smith et al. (2000, 2005); Lynch & McClenaghan (2001). . For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental top

The 4-aminobenzoic acid (0.137 mg, 1.0 mmol) and 1,2-bis(4-pyridyl)ethane (184 mg, 1.0 mmol) were dissolved in 20 ml 50% methanol-water, the solution was refluxed for 30 min. The filtered solution was transferred to a 25 ml tube after one week at room temperature, and colorless transparent crystals formed (yield 60.48%).

Refinement top

N and O-bound H atoms were located in a difference Fourier map and were refined isotropically. Other H atoms were positioned geometrically with C—H=0.93 (aromatic) and 0.97 Å(methylene), and refined using a riding model with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing for the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
4-Aminobenzoic acid–1,2-bis(4-pyridyl)ethane (2/1) top
Crystal data top
C12H12N2·2C7H7NO2F(000) = 484
Mr = 458.51Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2347 reflections
a = 7.3556 (10) Åθ = 3.0–23.7°
b = 23.230 (3) ŵ = 0.09 mm1
c = 7.9373 (11) ÅT = 297 K
β = 115.579 (2)°Parallelepiped, colorless
V = 1223.3 (3) Å30.76 × 0.34 × 0.22 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2406 independent reflections
Radiation source: fine-focus sealed tube1530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 26.1°, θmin = 1.8°
Absorption correction: multi-scan
(SMART; Bruker, 2000)
h = 95
Tmin = 0.674, Tmax = 1.000k = 2728
6871 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0959P)2 + 0.0431P]
where P = (Fo2 + 2Fc2)/3
2406 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
0 constraints
Crystal data top
C12H12N2·2C7H7NO2V = 1223.3 (3) Å3
Mr = 458.51Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3556 (10) ŵ = 0.09 mm1
b = 23.230 (3) ÅT = 297 K
c = 7.9373 (11) Å0.76 × 0.34 × 0.22 mm
β = 115.579 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2406 independent reflections
Absorption correction: multi-scan
(SMART; Bruker, 2000)
1530 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 1.000Rint = 0.032
6871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
2406 reflectionsΔρmin = 0.23 e Å3
162 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N21.1453 (2)0.43421 (8)0.3904 (2)0.0738 (7)
C81.0950 (3)0.48682 (10)0.3233 (3)0.0783 (8)
C90.8987 (3)0.50396 (11)0.2231 (4)0.0864 (9)
C100.7437 (3)0.46541 (11)0.1882 (3)0.0739 (8)
C110.7978 (3)0.41122 (10)0.2571 (3)0.0806 (8)
C120.9970 (3)0.39735 (10)0.3566 (3)0.0826 (9)
C130.5251 (3)0.48182 (15)0.0801 (4)0.1066 (13)
O10.4674 (2)0.33090 (7)0.4157 (2)0.0841 (5)
O20.51671 (19)0.40480 (7)0.6066 (2)0.0837 (6)
N11.3716 (3)0.28863 (10)1.0252 (3)0.0824 (8)
C10.5750 (3)0.35702 (8)0.5572 (3)0.0624 (6)
C20.7798 (3)0.33843 (8)0.6832 (2)0.0560 (6)
C30.8914 (3)0.36554 (8)0.8520 (3)0.0621 (6)
C41.0858 (3)0.34892 (8)0.9655 (3)0.0649 (6)
C51.1749 (3)0.30406 (8)0.9143 (3)0.0601 (6)
C61.0617 (3)0.27578 (9)0.7479 (3)0.0722 (7)
C70.8687 (3)0.29233 (9)0.6355 (3)0.0690 (7)
H8A1.197100.513500.345000.0940*
H9A0.870200.541500.178800.1040*
H11A0.699100.383500.236500.0970*
H12A1.029500.360100.402800.0990*
H13A0.447000.446700.039000.1280*
H13B0.481900.501000.165100.1280*
H1A1.413 (4)0.3021 (12)1.142 (4)0.108 (9)*
H1B1.409 (3)0.2543 (12)0.988 (3)0.095 (8)*
H2A0.387300.412200.527800.1600*
H3A0.833800.395600.889400.0750*
H4A1.158000.368001.077800.0780*
H6A1.118100.245000.712100.0870*
H7A0.795500.272400.525100.0830*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0497 (10)0.0777 (12)0.0824 (12)0.0081 (8)0.0176 (9)0.0039 (9)
C80.0490 (11)0.0770 (14)0.0935 (16)0.0026 (10)0.0163 (11)0.0066 (12)
C90.0549 (13)0.0798 (15)0.1084 (18)0.0100 (10)0.0201 (12)0.0279 (13)
C100.0445 (10)0.0941 (16)0.0755 (13)0.0038 (10)0.0189 (9)0.0124 (11)
C110.0565 (13)0.0847 (15)0.0937 (15)0.0058 (10)0.0260 (12)0.0087 (12)
C120.0670 (14)0.0707 (13)0.1014 (17)0.0099 (11)0.0281 (13)0.0117 (12)
C130.0498 (13)0.146 (3)0.110 (2)0.0138 (13)0.0212 (13)0.0438 (17)
O10.0607 (8)0.0805 (10)0.0741 (9)0.0025 (7)0.0058 (7)0.0085 (8)
O20.0553 (8)0.0796 (10)0.0888 (11)0.0151 (7)0.0052 (7)0.0106 (8)
N10.0556 (11)0.0881 (14)0.0825 (14)0.0129 (10)0.0100 (10)0.0009 (11)
C10.0496 (10)0.0616 (11)0.0620 (11)0.0040 (8)0.0110 (9)0.0041 (9)
C20.0480 (10)0.0548 (10)0.0557 (10)0.0022 (8)0.0134 (8)0.0004 (8)
C30.0574 (11)0.0591 (11)0.0592 (11)0.0088 (8)0.0152 (9)0.0038 (9)
C40.0570 (11)0.0638 (11)0.0546 (10)0.0021 (9)0.0060 (9)0.0047 (9)
C50.0483 (10)0.0596 (11)0.0627 (11)0.0042 (8)0.0147 (9)0.0075 (9)
C60.0662 (12)0.0703 (12)0.0705 (12)0.0141 (10)0.0206 (10)0.0085 (10)
C70.0628 (12)0.0690 (12)0.0593 (11)0.0029 (9)0.0114 (9)0.0099 (9)
Geometric parameters (Å, º) top
O1—C11.220 (3)C11—H11A0.9300
O2—C11.310 (3)C12—H12A0.9300
O2—H2A0.9000C13—H13B0.9700
N2—C121.320 (3)C13—H13A0.9700
N2—C81.321 (3)C1—C21.468 (3)
N1—C51.377 (3)C2—C71.390 (3)
N1—H1A0.90 (3)C2—C31.384 (3)
N1—H1B0.93 (3)C3—C41.376 (3)
C8—C91.373 (4)C4—C51.382 (3)
C9—C101.381 (4)C5—C61.386 (3)
C10—C131.509 (4)C6—C71.366 (3)
C10—C111.362 (3)C3—H3A0.9300
C11—C121.369 (3)C4—H4A0.9300
C13—C13i1.436 (4)C6—H6A0.9300
C8—H8A0.9300C7—H7A0.9300
C9—H9A0.9300
O1···N1ii3.081 (3)C12···H4Axi3.0000
O1···N1iii3.030 (3)C13···H9Ai2.7900
O2···N2iv2.613 (2)H1A···O1vii2.14 (3)
O1···H1Aiii2.14 (3)H1A···H4A2.3000
O1···H1Bii2.16 (3)H1B···H6A2.3200
O1···H7A2.5700H1B···O1viii2.16 (3)
O1···H11A2.9200H1B···C1viii2.81 (3)
O1···H4Aiii2.8000H2A···C8iv2.6900
O2···H3A2.4500H2A···C12iv2.6200
O2···H8Av2.7400H2A···N2iv1.7200
O2···H13Bvi2.8400H3A···O22.4500
N1···O1vii3.030 (3)H3A···C11xii3.0600
N1···O1viii3.081 (3)H4A···H1A2.3000
N2···O2ix2.613 (2)H4A···C12xii3.0000
N2···C1ix3.368 (3)H4A···O1vii2.8000
N1···H6Ax2.9500H6A···H1B2.3200
N2···H2Aix1.7200H6A···N1xiii2.9500
C1···N2iv3.368 (3)H6A···C4xiii2.8700
C3···C9v3.567 (3)H6A···C5xiii2.8100
C8···C9v3.587 (4)H7A···O12.5700
C9···C8v3.587 (4)H8A···O2v2.7400
C9···C3v3.567 (3)H9A···C4v2.8700
C1···H1Bii2.81 (3)H9A···C13i2.7900
C3···H9Av2.8600H9A···C3v2.8600
C4···H9Av2.8700H9A···H13Ai2.2400
C4···H6Ax2.8700H11A···O12.9200
C5···H6Ax2.8100H11A···H13A2.3500
C7···H12A3.0300H12A···C73.0300
C8···H2Aix2.6900H13A···H11A2.3500
C9···H13Ai2.7500H13A···C9i2.7500
C11···H3Axi3.0600H13A···H9Ai2.2400
C12···H2Aix2.6200H13B···O2vi2.8400
C1—O2—H2A110.00C13i—C13—H13A108.00
C8—N2—C12117.08 (19)C13i—C13—H13B108.00
C5—N1—H1A111 (2)O2—C1—C2114.69 (17)
C5—N1—H1B113.1 (14)O1—C1—O2122.1 (2)
H1A—N1—H1B128 (2)O1—C1—C2123.22 (19)
N2—C8—C9122.9 (2)C1—C2—C7120.41 (16)
C8—C9—C10119.9 (2)C3—C2—C7117.52 (19)
C9—C10—C11116.5 (2)C1—C2—C3122.07 (19)
C11—C10—C13121.1 (2)C2—C3—C4121.4 (2)
C9—C10—C13122.4 (2)C3—C4—C5120.6 (2)
C10—C11—C12120.2 (2)N1—C5—C4120.6 (2)
N2—C12—C11123.3 (2)C4—C5—C6118.1 (2)
C10—C13—C13i117.1 (2)N1—C5—C6121.3 (2)
C9—C8—H8A118.00C5—C6—C7121.1 (2)
N2—C8—H8A119.00C2—C7—C6121.17 (19)
C8—C9—H9A120.00C2—C3—H3A119.00
C10—C9—H9A120.00C4—C3—H3A119.00
C10—C11—H11A120.00C3—C4—H4A120.00
C12—C11—H11A120.00C5—C4—H4A120.00
N2—C12—H12A118.00C5—C6—H6A119.00
C11—C12—H12A118.00C7—C6—H6A119.00
C10—C13—H13B108.00C2—C7—H7A119.00
H13A—C13—H13B107.00C6—C7—H7A119.00
C10—C13—H13A108.00
C12—N2—C8—C90.3 (3)O2—C1—C2—C37.6 (3)
C8—N2—C12—C110.0 (3)O2—C1—C2—C7172.38 (19)
N2—C8—C9—C100.2 (4)C1—C2—C3—C4177.7 (2)
C8—C9—C10—C110.3 (4)C7—C2—C3—C42.3 (3)
C8—C9—C10—C13179.6 (2)C1—C2—C7—C6177.6 (2)
C9—C10—C11—C120.6 (3)C3—C2—C7—C62.3 (3)
C13—C10—C11—C12179.3 (2)C2—C3—C4—C50.5 (3)
C9—C10—C13—C13i40.3 (4)C3—C4—C5—N1178.0 (2)
C11—C10—C13—C13i139.9 (3)C3—C4—C5—C61.2 (3)
C10—C11—C12—N20.4 (3)N1—C5—C6—C7178.0 (2)
C10—C13—C13i—C10i180.0 (2)C4—C5—C6—C71.2 (3)
O1—C1—C2—C3173.5 (2)C5—C6—C7—C20.6 (3)
O1—C1—C2—C76.5 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1/2, z1/2; (iii) x1, y, z1; (iv) x1, y, z; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y, z+1; (viii) x+1, y+1/2, z+1/2; (ix) x+1, y, z; (x) x, y+1/2, z+1/2; (xi) x, y, z1; (xii) x, y, z+1; (xiii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1vii0.90 (3)2.14 (3)3.030 (3)171 (3)
N1—H1B···O1viii0.93 (3)2.16 (3)3.081 (3)172 (2)
O2—H2A···N2iv0.901.722.613 (2)173
Symmetry codes: (iv) x1, y, z; (vii) x+1, y, z+1; (viii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H12N2·2C7H7NO2
Mr458.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)7.3556 (10), 23.230 (3), 7.9373 (11)
β (°) 115.579 (2)
V3)1223.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.76 × 0.34 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SMART; Bruker, 2000)
Tmin, Tmax0.674, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6871, 2406, 1530
Rint0.032
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.165, 1.03
No. of reflections2406
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXL97 (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
O1—C11.220 (3)N2—C81.321 (3)
O2—C11.310 (3)N1—C51.377 (3)
N2—C121.320 (3)
C8—N2—C12117.08 (19)O1—C1—O2122.1 (2)
N2—C8—C9122.9 (2)O1—C1—C2123.22 (19)
N2—C12—C11123.3 (2)N1—C5—C4120.6 (2)
O2—C1—C2114.69 (17)N1—C5—C6121.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.90 (3)2.14 (3)3.030 (3)171 (3)
N1—H1B···O1ii0.93 (3)2.16 (3)3.081 (3)172 (2)
O2—H2A···N2iii0.90001.72002.613 (2)173.00
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

This work was supported financially by Yuanpei University.

References

First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2001). Acta Cryst. C57, 830–832.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Baldry, K. E., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 727–736.  CSD CrossRef CAS Web of Science Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005). Acta Cryst. E61, o313–o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Bott, R. C. & Lynch, D. E. (2000). Acta Cryst. C56, 1155–1156.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds