organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl­nicotinamide

aShenyang Research Institute of Chemical Industry, Shenyang 110021, People's Republic of China
*Correspondence e-mail: joycelina@163.com

(Received 2 June 2010; accepted 17 June 2010; online 23 June 2010)

In the title compound, C12H16N2O, the dihedral angle between the pyridine ring and C/O/N plane is 22.93 (7)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules, forming extended chains along [001]. ππ inter­actions between inversion-related pyridine rings [centroid–centroid distance = 3.825 (2)Å] are also observed.

Related literature

For background information on metal-organic framework compounds, see: Subramanian & Zaworotko (1994[Subramanian, S. & Zaworotko, M. J. (1994). Coord. Chem. Rev. 137, 357-401.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, T. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Rosi et al. (2005[Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504-1518.]). For details of the synthesis, see: Basolo et al. (2009[Basolo, L., Beccalli, E. M., Borsini, E. & Broggini, G. (2009). Tetrahedron, 65, 3486-3490.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O

  • Mr = 204.27

  • Monoclinic, P 21 /c

  • a = 17.596 (2) Å

  • b = 6.4050 (8) Å

  • c = 10.1167 (12) Å

  • β = 103.921 (2)°

  • V = 1106.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.32 × 0.30 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.869, Tmax = 1.000

  • 5389 measured reflections

  • 1956 independent reflections

  • 1661 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.06

  • 1956 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.17 2.9998 (13) 162
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic frameworks (MOFs) have attracted much attention because of their intriguing topologies (Subramanian & Zaworotko,1994; Kitagawa et al., 2004; Rosi et al., 2005). During our efforts to investigate the assembly of metal-organic coordination frameworks, a new compound was generated accidentally and its crystal structure is described in this paper. A dedicated synthesis of the compound was previously described by Basolo et al., (2009). The molecular structure of compound is shown in Fig. 1. The dihedral angle between the mean plane of the pyridine ring and the plane formed by atoms C/O/N is 22.93 (7)°. In the crystal structure N—H···O hydrogen bonds involving the acyl O atoms and the adjacent N—H group, form one-dimensional chains along [001] (Fig. 2). There are also π-π interactions involving inversion related pyridine rings.

Related literature top

For background information on metal-organic framework compounds, see: Subramanian & Zaworotko (1994); Kitagawa et al. (2004); Rosi et al. (2005). For details of the synthesis, see: Basolo et al. (2009).

Experimental top

All the starting materials and solvents for syntheses were obtained commercially and used as received. Zn(OAc)2.4H2O (21.8 mg, 0.1 mmol) and N-cyclohexylnicotinamide (20.4 mg, 0.1 mmol) were mixed in a CH3CN/H2O (20 ml, 1:1 v/v) solution with vigorous stirring for ca 30 min. The resulting solution was filtered and left to stand at room temperature. Pale-yellow prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent over a period of 1 week.

Refinement top

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with C—H distances in the range 0.93–0.97Å and N—H distances of 0.86 Å, and included in the final refinement in the riding model approximation,with Uiso(H) = 1.2Ueq(C,N) for cyclohexyl and nicotinamide H atoms.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability ellipsoids.
[Figure 2] Fig. 2. The one-dimensional chain structure of the title compound, showing N—H···O hydrogen bonds as red dashed lines.
N-cyclohexylnicotinamide top
Crystal data top
C12H16N2OF(000) = 440
Mr = 204.27Dx = 1.226 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2901 reflections
a = 17.596 (2) Åθ = 2.8–29.5°
b = 6.4050 (8) ŵ = 0.08 mm1
c = 10.1167 (12) ÅT = 296 K
β = 103.921 (2)°Block, pale yellow
V = 1106.7 (2) Å30.32 × 0.30 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1956 independent reflections
Radiation source: fine-focus sealed tube1661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.869, Tmax = 1.000k = 77
5389 measured reflectionsl = 712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.1872P]
where P = (Fo2 + 2Fc2)/3
1956 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H16N2OV = 1106.7 (2) Å3
Mr = 204.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.596 (2) ŵ = 0.08 mm1
b = 6.4050 (8) ÅT = 296 K
c = 10.1167 (12) Å0.32 × 0.30 × 0.22 mm
β = 103.921 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1956 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1661 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 1.000Rint = 0.013
5389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.06Δρmax = 0.10 e Å3
1956 reflectionsΔρmin = 0.17 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26804 (6)0.73912 (16)0.77836 (8)0.0572 (3)
N10.43960 (7)1.0508 (2)1.16302 (11)0.0604 (3)
N20.25623 (6)0.64514 (17)0.98679 (9)0.0421 (3)
H20.27060.66881.07290.051*
C10.36028 (8)1.0899 (2)0.89337 (13)0.0535 (4)
H10.33461.10240.80190.064*
C20.41240 (9)1.2403 (2)0.95508 (15)0.0620 (4)
H2A0.42221.35640.90650.074*
C30.44952 (8)1.2162 (2)1.08908 (15)0.0597 (4)
H30.48351.32081.13100.072*
C40.38905 (8)0.9069 (2)1.10174 (13)0.0500 (3)
H40.38190.78991.15180.060*
C50.34619 (7)0.9201 (2)0.96774 (11)0.0401 (3)
C60.28717 (7)0.7604 (2)0.90309 (11)0.0408 (3)
C70.19904 (7)0.48073 (19)0.93833 (11)0.0402 (3)
H70.21260.41310.86020.048*
C80.20335 (8)0.3175 (2)1.04845 (13)0.0479 (3)
H8A0.19290.38271.12880.057*
H8B0.25570.25901.07320.057*
C90.14451 (9)0.1438 (2)1.00039 (15)0.0572 (4)
H9A0.15840.06870.92630.069*
H9B0.14640.04621.07440.069*
C100.06238 (9)0.2285 (2)0.95261 (14)0.0556 (4)
H10A0.02690.11510.91660.067*
H10B0.04600.28841.02940.067*
C110.05771 (8)0.3929 (2)0.84404 (13)0.0543 (4)
H11A0.00530.45110.82030.065*
H11B0.06770.32880.76300.065*
C120.11653 (7)0.5674 (2)0.89148 (13)0.0482 (3)
H12A0.11440.66500.81740.058*
H12B0.10300.64230.96590.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0711 (6)0.0719 (7)0.0293 (5)0.0167 (5)0.0134 (4)0.0038 (4)
N10.0581 (7)0.0738 (8)0.0439 (6)0.0118 (6)0.0014 (5)0.0022 (6)
N20.0492 (6)0.0490 (6)0.0286 (5)0.0060 (5)0.0102 (4)0.0030 (4)
C10.0543 (8)0.0661 (9)0.0378 (7)0.0094 (7)0.0069 (6)0.0063 (6)
C20.0659 (9)0.0628 (9)0.0563 (9)0.0178 (7)0.0128 (7)0.0086 (7)
C30.0556 (8)0.0653 (9)0.0554 (8)0.0164 (7)0.0079 (7)0.0062 (7)
C40.0512 (7)0.0587 (8)0.0381 (7)0.0055 (6)0.0068 (5)0.0033 (6)
C50.0386 (6)0.0502 (7)0.0332 (6)0.0011 (5)0.0120 (5)0.0004 (5)
C60.0429 (7)0.0490 (7)0.0316 (6)0.0017 (5)0.0110 (5)0.0005 (5)
C70.0487 (7)0.0405 (6)0.0323 (6)0.0020 (5)0.0111 (5)0.0045 (5)
C80.0562 (8)0.0439 (7)0.0421 (7)0.0049 (6)0.0090 (6)0.0033 (6)
C90.0818 (10)0.0390 (7)0.0517 (8)0.0031 (7)0.0176 (7)0.0036 (6)
C100.0653 (9)0.0554 (8)0.0466 (8)0.0180 (7)0.0144 (6)0.0041 (6)
C110.0544 (8)0.0589 (9)0.0455 (7)0.0084 (6)0.0039 (6)0.0002 (6)
C120.0524 (7)0.0430 (7)0.0459 (7)0.0009 (6)0.0054 (6)0.0047 (6)
Geometric parameters (Å, º) top
O1—C61.2328 (14)C7—C121.5196 (17)
N1—C41.3262 (17)C7—H70.9800
N1—C31.3326 (19)C8—C91.5176 (19)
N2—C61.3341 (15)C8—H8A0.9700
N2—C71.4576 (15)C8—H8B0.9700
N2—H20.8600C9—C101.510 (2)
C1—C21.373 (2)C9—H9A0.9700
C1—C51.3783 (18)C9—H9B0.9700
C1—H10.9300C10—C111.5096 (19)
C2—C31.365 (2)C10—H10A0.9700
C2—H2A0.9300C10—H10B0.9700
C3—H30.9300C11—C121.5203 (18)
C4—C51.3863 (17)C11—H11A0.9700
C4—H40.9300C11—H11B0.9700
C5—C61.4919 (17)C12—H12A0.9700
C7—C81.5164 (17)C12—H12B0.9700
C4—N1—C3116.98 (11)C7—C8—H8A109.4
C6—N2—C7122.71 (9)C9—C8—H8A109.4
C6—N2—H2118.6C7—C8—H8B109.4
C7—N2—H2118.6C9—C8—H8B109.4
C2—C1—C5119.59 (12)H8A—C8—H8B108.0
C2—C1—H1120.2C10—C9—C8111.48 (11)
C5—C1—H1120.2C10—C9—H9A109.3
C3—C2—C1118.70 (14)C8—C9—H9A109.3
C3—C2—H2A120.6C10—C9—H9B109.3
C1—C2—H2A120.6C8—C9—H9B109.3
N1—C3—C2123.48 (13)H9A—C9—H9B108.0
N1—C3—H3118.3C11—C10—C9111.33 (12)
C2—C3—H3118.3C11—C10—H10A109.4
N1—C4—C5124.11 (13)C9—C10—H10A109.4
N1—C4—H4117.9C11—C10—H10B109.4
C5—C4—H4117.9C9—C10—H10B109.4
C1—C5—C4117.05 (12)H10A—C10—H10B108.0
C1—C5—C6119.96 (11)C10—C11—C12111.68 (10)
C4—C5—C6122.99 (11)C10—C11—H11A109.3
O1—C6—N2122.41 (11)C12—C11—H11A109.3
O1—C6—C5120.95 (11)C10—C11—H11B109.3
N2—C6—C5116.64 (10)C12—C11—H11B109.3
N2—C7—C8110.04 (9)H11A—C11—H11B107.9
N2—C7—C12111.81 (10)C7—C12—C11110.90 (11)
C8—C7—C12110.86 (10)C7—C12—H12A109.5
N2—C7—H7108.0C11—C12—H12A109.5
C8—C7—H7108.0C7—C12—H12B109.5
C12—C7—H7108.0C11—C12—H12B109.5
C7—C8—C9111.12 (10)H12A—C12—H12B108.0
C5—C1—C2—C30.5 (2)C1—C5—C6—N2157.12 (12)
C4—N1—C3—C21.9 (2)C4—C5—C6—N223.14 (18)
C1—C2—C3—N12.0 (3)C6—N2—C7—C8153.38 (11)
C3—N1—C4—C50.6 (2)C6—N2—C7—C1282.96 (14)
C2—C1—C5—C42.8 (2)N2—C7—C8—C9179.80 (10)
C2—C1—C5—C6177.44 (12)C12—C7—C8—C955.99 (14)
N1—C4—C5—C13.0 (2)C7—C8—C9—C1055.68 (15)
N1—C4—C5—C6177.30 (12)C8—C9—C10—C1154.95 (15)
C7—N2—C6—O11.82 (19)C9—C10—C11—C1254.88 (16)
C7—N2—C6—C5178.83 (10)N2—C7—C12—C11178.89 (10)
C1—C5—C6—O122.24 (18)C8—C7—C12—C1155.69 (14)
C4—C5—C6—O1157.50 (13)C10—C11—C12—C755.31 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.172.9998 (13)162
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H16N2O
Mr204.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.596 (2), 6.4050 (8), 10.1167 (12)
β (°) 103.921 (2)
V3)1106.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.30 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.869, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5389, 1956, 1661
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.06
No. of reflections1956
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.17

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.172.9998 (13)161.5
Symmetry code: (i) x, y+3/2, z+1/2.
 

References

First citationBasolo, L., Beccalli, E. M., Borsini, E. & Broggini, G. (2009). Tetrahedron, 65, 3486–3490.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S., Kitaura, T. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationRosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504–1518.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanian, S. & Zaworotko, M. J. (1994). Coord. Chem. Rev. 137, 357–401.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds