organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl­anilinium 3,5-di­nitro­benzoate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: youyoubanzhen@126.com

(Received 7 May 2010; accepted 18 May 2010; online 5 June 2010)

The crystal structure of the title compound, C7H10N+·C7H3N2O6, displays N—H⋯O hydrogen bonding between the ammonium groups and the O atoms of the 3,5-dinitro­benzoate anions. Inter­molecular C—H⋯O inter­actions further stabilize the packing. An O atom of each of the nitro groups is disordered over two sites with site occupancy factors of 0.59 (5) and 0.41 (6).

Related literature

For dielectric–ferroelectric properties, see: Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem, 11, 1959-1962]). For a related structure, see: Basaran et al. (1991[Basaran, R., Dou, S. & Weiss, A. (1991). Ber. Bunsenges. Phys. Chem. 95, 46-57.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·C7H3N2O6

  • Mr = 319.27

  • Orthorhombic, P b c a

  • a = 19.790 (4) Å

  • b = 7.2380 (14) Å

  • c = 20.473 (4) Å

  • V = 2932.5 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.978, Tmax = 0.978

  • 28284 measured reflections

  • 3360 independent reflections

  • 2368 reflections with I > 2.0 σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.159

  • S = 0.96

  • 3360 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 1.94 2.803 (2) 163
N1—H1B⋯O1 0.89 1.90 2.761 (2) 163
N1—H1C⋯O2ii 0.89 2.22 3.045 (2) 153
N1—H1C⋯O1ii 0.89 2.24 3.030 (2) 147
C3—H3⋯O1ii 0.93 2.59 3.344 (3) 138
C13—H13⋯O3iii 0.93 2.43 3.351 (7) 173
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Probing the dielectric-ferroelectric properties of organic ligands (Li et al., 2008), the title compound has been prepared in our laboratory. In this article, the preparation and crystal structure of the title compound have been presented. A related structure, that of 4-tethylanilinium dichloroacetate, has been reported previously (Basaran et al., 1991).

The asymmetric unit of the title compound composes of a (CH3—C6H4—NH3+) cation and an (2(NO2)-C6H3—COO-) anion (Fig. 1). The strong N—H···O hydrogen bonds involving H1A and H1B (N1···O2 2.803 (2) and N1···O1 2.761 (2) Å) and the bifurcated hydrogen bonds involving H1C (N1···O2 3.045 (2) and N1···O1 3.030 (2) Å) are beneficial to the stability of the crystal structure (Fig. 2 and Tab. 1). Hydrogen bonds of the type C—H···O further stabilize the crystal structure.

Related literature top

For the dielectric–ferroelectric properties of organic ligands, see: Li et al. (2008). For a related structure, see: Basaran et al. (1991).

Experimental top

The title compound was obtained by the addition of 3,5-dinitrobenzoic acid (4.66 g, 0.022 mol) to a solution of 4-methylaniline (2.14 g, 0.02 mol) in ethanol, in the stoichiometric ratio 1.1:1. After two weeks, good quality single crystals were obtained by slow evaporation.

Refinement top

O3 and O6 atoms of the nitro groups were disordered over two sites with site occupancy factors 0.59 (5) and 0.41 (6). Positional parameters of all the H atoms were calculated geometrically and the H atoms were set to ride on the C and N atoms to which they are bonded with N—H = 0.89 Å and C—H = 0.93 and 0.96 Å for aryl and methyl H-atoms, respectively, with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. O3' and O6' representing the smaller fractions of the disordered atoms have been excluded.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b-axis. Dashed lines indicate hydrogen bonds.
4-methylanilinium 3,5-dinitrobenzoate top
Crystal data top
C7H10N+·C7H3N2O6F(000) = 1328
Mr = 319.27Dx = 1.446 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 11511 reflections
a = 19.790 (4) Åθ = 3.0–27.5°
b = 7.2380 (14) ŵ = 0.12 mm1
c = 20.473 (4) ÅT = 293 K
V = 2932.5 (10) Å3Prism, colorless
Z = 80.2 × 0.2 × 0.2 mm
Data collection top
Rigaku Mercury2
diffractometer
3360 independent reflections
Radiation source: fine-focus sealed tube2368 reflections with I > 2.0 σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scansh = 2525
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.978, Tmax = 0.978l = 2626
28284 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.969P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.026
3360 reflectionsΔρmax = 0.21 e Å3
230 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (11)
Crystal data top
C7H10N+·C7H3N2O6V = 2932.5 (10) Å3
Mr = 319.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 19.790 (4) ŵ = 0.12 mm1
b = 7.2380 (14) ÅT = 293 K
c = 20.473 (4) Å0.2 × 0.2 × 0.2 mm
Data collection top
Rigaku Mercury2
diffractometer
3360 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2368 reflections with I > 2.0 σ(I)
Tmin = 0.978, Tmax = 0.978Rint = 0.078
28284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.96Δρmax = 0.21 e Å3
3360 reflectionsΔρmin = 0.22 e Å3
230 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C130.05834 (9)0.8208 (3)0.03041 (9)0.0389 (4)
H130.03020.72350.04240.047*
O20.01845 (8)1.1416 (2)0.15941 (8)0.0607 (5)
C80.06408 (9)0.9758 (2)0.06998 (9)0.0355 (4)
O10.00415 (8)0.8407 (2)0.15781 (7)0.0572 (4)
C90.10590 (10)1.1195 (3)0.05077 (9)0.0424 (5)
H90.10961.22520.07630.051*
C120.09496 (10)0.8128 (3)0.02711 (9)0.0418 (5)
C140.02558 (9)0.9872 (3)0.13409 (9)0.0397 (4)
O40.12095 (11)0.6430 (3)0.11917 (9)0.0845 (6)
N20.08814 (12)0.6506 (3)0.07003 (10)0.0655 (6)
C110.13792 (10)0.9514 (3)0.04684 (9)0.0433 (5)
H110.16290.94260.08520.052*
N30.18743 (11)1.2557 (3)0.02654 (9)0.0660 (6)
C100.14210 (10)1.1040 (3)0.00676 (9)0.0441 (5)
O50.21377 (11)1.2487 (3)0.07970 (9)0.0895 (7)
N10.03402 (8)0.4988 (2)0.21019 (8)0.0423 (4)
H1A0.02160.39540.18990.051*
H1B0.01880.59590.18800.051*
H1C0.01680.50010.25030.051*
C50.14494 (11)0.5352 (3)0.15756 (10)0.0464 (5)
H50.12320.55200.11770.056*
C40.10811 (10)0.5068 (2)0.21395 (9)0.0378 (4)
C10.24824 (11)0.5139 (3)0.22000 (10)0.0443 (5)
C30.13975 (11)0.4821 (3)0.27266 (10)0.0504 (5)
H30.11460.46240.31040.061*
C60.21460 (11)0.5381 (3)0.16134 (10)0.0501 (5)
H60.23960.55680.12340.060*
C20.20983 (11)0.4868 (3)0.27537 (10)0.0527 (6)
H20.23130.47130.31540.063*
C70.32394 (11)0.5136 (3)0.22312 (13)0.0601 (6)
H7A0.33820.52820.26760.072*
H7B0.34130.61370.19740.072*
H7C0.34080.39860.20640.072*
O60.1864 (11)1.4010 (15)0.0066 (7)0.079 (3)0.59 (5)
O30.0382 (13)0.549 (3)0.0614 (5)0.086 (4)0.59 (5)
O6'0.2092 (15)1.351 (5)0.0179 (11)0.090 (7)0.41 (5)
O3'0.0653 (14)0.5080 (19)0.0405 (18)0.086 (6)0.41 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C130.0403 (10)0.0373 (10)0.0390 (10)0.0003 (8)0.0010 (8)0.0025 (8)
O20.0577 (10)0.0609 (10)0.0635 (10)0.0064 (7)0.0159 (7)0.0254 (8)
C80.0338 (9)0.0401 (10)0.0327 (9)0.0041 (7)0.0020 (7)0.0007 (8)
O10.0631 (9)0.0534 (9)0.0552 (9)0.0088 (7)0.0223 (7)0.0144 (7)
C90.0473 (11)0.0409 (10)0.0389 (10)0.0035 (8)0.0004 (8)0.0036 (8)
C120.0492 (11)0.0382 (10)0.0380 (10)0.0028 (8)0.0002 (8)0.0046 (8)
C140.0317 (9)0.0499 (12)0.0374 (10)0.0033 (8)0.0000 (7)0.0025 (9)
O40.1219 (17)0.0742 (12)0.0575 (11)0.0063 (11)0.0326 (11)0.0238 (9)
N20.0895 (16)0.0515 (12)0.0554 (12)0.0094 (11)0.0180 (11)0.0127 (10)
C110.0471 (11)0.0500 (11)0.0327 (9)0.0016 (9)0.0043 (8)0.0012 (8)
N30.0785 (14)0.0701 (14)0.0492 (11)0.0299 (11)0.0148 (10)0.0049 (10)
C100.0443 (11)0.0499 (12)0.0382 (10)0.0098 (9)0.0005 (8)0.0027 (8)
O50.1144 (16)0.0894 (14)0.0647 (11)0.0438 (12)0.0420 (11)0.0088 (10)
N10.0482 (10)0.0403 (9)0.0384 (9)0.0019 (7)0.0036 (7)0.0038 (7)
C50.0577 (13)0.0461 (11)0.0356 (10)0.0011 (9)0.0045 (9)0.0038 (8)
C40.0462 (11)0.0303 (9)0.0370 (10)0.0013 (7)0.0048 (8)0.0041 (7)
C10.0465 (11)0.0357 (10)0.0506 (11)0.0015 (8)0.0078 (9)0.0041 (8)
C30.0491 (12)0.0672 (14)0.0350 (10)0.0064 (10)0.0089 (9)0.0023 (9)
C60.0572 (13)0.0497 (12)0.0434 (11)0.0016 (9)0.0184 (10)0.0024 (9)
C20.0507 (12)0.0687 (15)0.0387 (11)0.0048 (10)0.0010 (9)0.0003 (10)
C70.0497 (13)0.0572 (14)0.0735 (16)0.0016 (10)0.0103 (11)0.0026 (12)
O60.116 (7)0.063 (4)0.058 (4)0.037 (4)0.013 (4)0.006 (2)
O30.136 (9)0.064 (5)0.058 (3)0.053 (5)0.016 (4)0.014 (3)
O6'0.105 (10)0.107 (13)0.058 (6)0.068 (9)0.016 (6)0.023 (7)
O3'0.113 (9)0.055 (4)0.090 (12)0.017 (5)0.034 (7)0.022 (5)
Geometric parameters (Å, º) top
C13—C121.384 (3)N3—C101.475 (3)
C13—C81.389 (3)N1—C41.469 (3)
C13—H130.9300N1—H1A0.8900
O2—C141.240 (2)N1—H1B0.8900
C8—C91.386 (3)N1—H1C0.8900
C8—C141.520 (3)C5—C41.381 (3)
O1—C141.241 (2)C5—C61.381 (3)
C9—C101.383 (3)C5—H50.9300
C9—H90.9300C4—C31.367 (3)
C12—C111.376 (3)C1—C21.379 (3)
C12—N21.473 (3)C1—C61.384 (3)
O4—N21.199 (2)C1—C71.499 (3)
N2—O31.242 (12)C3—C21.388 (3)
N2—O3'1.279 (19)C3—H30.9300
C11—C101.378 (3)C6—H60.9300
C11—H110.9300C2—H20.9300
N3—O51.208 (2)C7—H7A0.9600
N3—O6'1.218 (16)C7—H7B0.9600
N3—O61.252 (12)C7—H7C0.9600
C12—C13—C8119.15 (17)C9—C10—N3119.25 (18)
C12—C13—H13120.4C4—N1—H1A109.5
C8—C13—H13120.4C4—N1—H1B109.5
C9—C8—C13119.31 (17)H1A—N1—H1B109.5
C9—C8—C14120.25 (16)C4—N1—H1C109.5
C13—C8—C14120.43 (16)H1A—N1—H1C109.5
C10—C9—C8119.36 (18)H1B—N1—H1C109.5
C10—C9—H9120.3C4—C5—C6118.84 (19)
C8—C9—H9120.3C4—C5—H5120.6
C11—C12—C13122.91 (18)C6—C5—H5120.6
C11—C12—N2117.56 (18)C3—C4—C5120.86 (19)
C13—C12—N2119.53 (18)C3—C4—N1119.86 (16)
O2—C14—O1124.57 (18)C5—C4—N1119.26 (17)
O2—C14—C8117.84 (17)C2—C1—C6117.8 (2)
O1—C14—C8117.58 (17)C2—C1—C7121.0 (2)
O4—N2—O3121.6 (4)C6—C1—C7121.17 (19)
O4—N2—O3'123.5 (6)C4—C3—C2119.30 (18)
O3—N2—O3'34.5 (6)C4—C3—H3120.3
O4—N2—C12119.18 (19)C2—C3—H3120.3
O3—N2—C12117.2 (6)C5—C6—C1121.78 (18)
O3'—N2—C12113.2 (12)C5—C6—H6119.1
C12—C11—C10116.52 (18)C1—C6—H6119.1
C12—C11—H11121.7C1—C2—C3121.4 (2)
C10—C11—H11121.7C1—C2—H2119.3
O5—N3—O6'122.9 (8)C3—C2—H2119.3
O5—N3—O6122.1 (6)C1—C7—H7A109.5
O6'—N3—O629.2 (15)C1—C7—H7B109.5
O5—N3—C10118.59 (19)H7A—C7—H7B109.5
O6'—N3—C10115.5 (11)C1—C7—H7C109.5
O6—N3—C10117.9 (7)H7A—C7—H7C109.5
C11—C10—C9122.73 (18)H7B—C7—H7C109.5
C11—C10—N3118.01 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.942.803 (2)163
N1—H1B···O10.891.902.761 (2)163
N1—H1C···O2ii0.892.223.045 (2)153
N1—H1C···O1ii0.892.243.030 (2)147
C3—H3···O1ii0.932.593.344 (3)138
C13—H13···O3iii0.932.433.351 (7)173
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H10N+·C7H3N2O6
Mr319.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)19.790 (4), 7.2380 (14), 20.473 (4)
V3)2932.5 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.978, 0.978
No. of measured, independent and
observed [I > 2.0 σ(I)] reflections
28284, 3360, 2368
Rint0.078
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.159, 0.96
No. of reflections3360
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.942.803 (2)162.6
N1—H1B···O10.891.902.761 (2)162.8
N1—H1C···O2ii0.892.223.045 (2)153.1
N1—H1C···O1ii0.892.243.030 (2)147.0
C3—H3···O1ii0.932.593.344 (3)138.2
C13—H13···O3iii0.932.433.351 (7)172.8
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1, z.
 

References

First citationBasaran, R., Dou, S. & Weiss, A. (1991). Ber. Bunsenges. Phys. Chem. 95, 46–57.  CrossRef CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem, 11, 1959–1962  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds